Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The natural “coat” for a stronger outfit.

05.07.2013
A report on the tensile and tearing strength of natural rubber latex (NRL) high strength coated fabrics.

Coated fabrics have been used in many applications such as agriculture, geotextiles, building and construction, medical, filtration and protective clothing. Coating of fabrics involves applying viscous liquid on the surface of the substrate before undergoing drying or curing process.

In a study conducted at University Teknologi MARA, Malaysia, researchers prepared a report on the tensile and tearing strength of natural rubber latex (NRL) high strength coated fabrics. 29 Plain woven Kevlar fabrics were coated with pre-vulcanised NRL using single-dip(SD), double-dip(DD) and triple-dip(TD) coating methods.

Both the tensile and tearing strength tests were done according to American Standard for Testing and Material (ASTM) using Testometric Tensile Tester and observations were made on their modes of failure.

In addition, a Field Emission Scanning Electron Microscopy (FESEM) was also done in order to observe the bonding between fibre and NRL. The NRL coated fabrics showed higher tensile and tearing strength in comparison with the uncoated fabrics.

The tensile strength for the SD-, DD- and TD-coated fabrics were 12%, 8% and 10% higher than the uncoated fabrics respectively. Similarly, the tearing strength for SD-, DD- and TD-coated fabrics were 9%, 12% and 18% higher than the uncoated fabric.

Overall, it was shown that the tensile and tearing strength of NRL coated fabrics was higher than uncoated fabric. A follow-up study was done using unidirectional fabrics, nano fillers and fabric stitching under the same group and reported that NRL coated fabrics still gives higher puncture resistance in comparisons with uncoated fabrics.

There were significant differences between the uncoated and NRL coated fabric. After each coating, the fabric’s real density and thickness increased. The NRL film on the fabric surface restricts the yarn’s freedom of movement under loading.

The energy absorption and elongation of the NRL coated fabric also increases as NRL layer helps absorbs the energy and increases the strength values before the fabric completely fails by breaking or tearing. It also assists the yarns to bunch together and resist the propagation of tear or break by sharing the load with a greater number of yarns before the fabric is completely failed.

Additionally, this research found that coating with NRL increase the energy absorption and the elasticity characteristics of the coated fabrics and prevents severe damage during loading. Therefore, the use of NRL as a coating element combined with high strength woven fabric such as Kevlar improves the fabric tensile and tearing strength.

In the future, the use of synthetic rubber may replace NRL to maximize the apprehension of coated fabric for ballistic impact penetration resistance.

Contact Information:
Nur Awatif Ahmad*,
Faculty of Applied Science,
Universiti Teknologi MARA, Malaysia.
rozitex@salam.uitm.edu.my

Darmarajah Nadarajah | Research asia research news
Further information:
http://www.uitm.edu.my
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>