Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Investigates Use of ‘Trailblazing’ Material for New Sensors

Tiny sensors -- made of a potentially trailblazing material just one atom thick and heralded as the “next best thing” since the invention of silicon -- are now being developed to detect trace elements in Earth’s upper atmosphere and structural flaws in spacecraft.

Technologist Mahmooda Sultana, who joined NASA’s Goddard Space Flight Center in Greenbelt, Md., two years ago and has since emerged as Goddard’s go-to expert in the development of graphene-based technology, has expanded her portfolio to include two new research and development efforts aimed at creating nano-sized detectors that could detect atomic oxygen and other trace elements in the upper atmosphere and structural strains in everything from airplane wings to spacecraft buses.

Goddard technologist Mahmooda Sultana is investigating two new applications for graphene, a trailblazing technology with unique physical characteristics that make if ideal for all type of spaceflight uses. Credit: NASA/Pat Izzo

“The cool thing about graphene is its properties,” said Jeff Stewart, the acting assistant chief for technology for Goddard’s Mechanical Systems Division. “It offers a plethora of possibilities. Frankly, we’re just getting started.”

Graphene, first discovered in 2004 by Russian-born scientists Andre Geim and Konstantin Novoselov, is just one atom thick and composed of carbon atoms arranged in tightly bound hexagons best visualized as atomic-scale chicken wire. Two hundred times stronger than structural steel, it not only is the strongest material ever measured, but also the most sensitive and stable at extreme temperatures, making it ideal for all types of uses. Since its discovery, hundreds of organizations worldwide have launched research efforts to take advantage of the material’s unique properties.

Goddard is one in the growing contingent.

More than a year ago, Sultana and her team won research and development funding to set up production facilities and fine-tune processing techniques for fabricating graphene using a technique called chemical vapor deposition (CVD), a technique also used in manufacturing computer chips. With this approach, technicians place a metal substrate inside a vacuum chamber and inject gases that then react or decompose to produce the desired thin film.

Since then, the group has succeeded at manufacturing and processing relatively large, high-quality pieces of graphene, and is now ready to apply its expertise to advance other applications. “One of the most promising applications of this material is as a chemical sensor,” Sultana said.

Chemical Sensors

She has teamed with retired Goddard scientist Fred Herrero, who is pursuing the research in an emeritus capacity, to develop a miniaturized, low-mass, low-power, graphene-based detector that could measure the amount of atomic oxygen in the upper atmosphere. Atomic oxygen in the upper atmosphere is created when ultraviolet radiation from the sun breaks apart oxygen molecule (O2). The resultant reactive element is highly corrosive. As satellites fly through the upper atmosphere, the chemical strikes them at about five miles per second. The impacts destroy commonly used spacecraft materials, such as Kapton.

Although scientists believe atomic oxygen makes up 96 percent of the thin atmosphere in low-Earth orbit, Herrero is interested in measuring its density and determining more precisely its role in creating atmospheric drag, which can cause orbiting spacecraft to lose altitude prematurely and plunge to Earth. “We still don’t know the impact of atomic elements on spacecraft in creating a drag force,” he said. “We don’t know how much momentum is transferred between the atom and the spacecraft. This is important because engineers need to understand the impact to estimate the lifetime of a spacecraft and how long it will take before the spacecraft reenters Earth’s atmosphere.”

Research has shown that graphene-based sensors offer a good solution, Sultana said. When graphene absorbs atomic oxygen, it oxidizes, producing a change in the material’s electrical resistance that a graphene-based sensor could then quickly count to produce a more accurate density measurement. “I’m really excited about this material’s possibilities,” Herrero said, adding that graphene would greatly simplify the steps needed to measure atomic oxygen. “We’d be counting how often the resistance changes.”

Atomic oxygen isn’t the only element the chemical sensor could measure, Sultana said. She also believes it’s ideal for measuring methane, carbon monoxide, and other gases on other planetary bodies and monitoring outgassing that sometimes contaminates instrument optics. She plans to fabricate and test the first generation of graphene-based chemical sensors by the end of the fiscal year, she said. “This is at a very early stage,” Sultana added.

Strain Detection

Graphene’s unique attributes also make it a viable candidate for detecting stresses in spacecraft components, she said. With her collaborators at the Massachusetts Institute of Technology (MIT), the team is using support from NASA’s Office of the Chief Technologist to advance a small sensor that could be embedded in spacecraft materials, including composites. If the material underwent some type of stress, the tiny sensors would detect it.

The team has used CVD to manufacture and test a large piece of graphene, whose electrical properties are sensitive to detecting stresses, Sultana said. Her MIT collaborators now are fabricating graphene devices and her team is wiring them to read out measurements — much like the medical electrodes used for certain medical tests. However, Sultana plans to eliminate the wiring so that it operates autonomously, she said.

“This could be deployed in a non-invasive way,” Stewart said. “Right now, we use relatively large devices to detect damage or potential sources of failure, but with autonomous graphene-based sensors our hope is that we could put them into the material itself.”

“We can employ a different combination of its extreme properties and use the same material for different sensing applications,” Sultana added. “That’s the beauty of graphene.”

Lori Keesey
NASA's Goddard Space Flight Center, Greenbelt, MD

Lori Keesey | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

nachricht Boron can form a purely honeycomb, graphene-like 2-D structure
15.03.2018 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>