Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology Helps Scientists Keep Silver Shiny

30.10.2012
There are thousands of silver artifacts in museum collections around the world, and keeping them shiny is a constant challenge. So scientists are using new technology to give conservators a helping hand.

A team of researchers led by Ray Phaneuf, a professor of materials science and engineering at the University of Maryland, College Park, has partnered with The Walters Art Museum in Baltimore to investigate less labor-intensive ways to protect silver artifacts from tarnishing.

The new techniques, which might keep silver surfaces shiny for longer than traditional methods, could help ensure that historically important artifacts are preserved for future generations to learn from and enjoy. The researchers will present their work at the AVS 59th International Symposium and Exhibition, held Oct. 28 – Nov. 2, in Tampa, Fla.

Silver tarnishes when hydrogen sulfide in the air reacts with the silver, forming an unsightly black layer of silver sulfide on the surface of the artifact. If the tarnish appears on Grandma's silver flatware set, a little polisher and some elbow grease will easily remove it. But polishing, which works by dissolving or grinding away the silver-sulfide layer, can also remove some of the underlying silver, an undesirable outcome for priceless works of art.

Currently museum conservators can apply a thin layer of nitrocellulose lacquer to protect the silver. The coating is often hand-painted by a trained specialist and must be removed and reapplied an average of every thirty years. Phaneuf notes that it is difficult to apply a layer of even thickness over an entire piece, and the process of applying, removing, and reapplying the film is time-consuming.

"We did a quick back-of-the envelope calculation and found that for a big museum like the Metropolitan Museum of Art in New York, treating their entire silver collection with nitrocellulose films would likely be a never-ending task," says Phaneuf.

A quicker conservation method is to display silver pieces in an enclosed chamber with filtered air, but the chambers often leak, are expensive to install and maintain, and putting an artifact behind glass may prevent visitors from seeing the object up-close and from multiple angles.

Phaneuf and his colleagues are investigating a technique that could overcome some of the shortcomings of current preservation methods. Called atomic layer deposition (ALD), the process gives scientists atomic-level control over the thickness of a transparent oxide film that they grow on the surface of silver objects. By running a series of surface-limited chemical reactions, researchers can build the protective film one atom-thick layer at a time. The films Phaneuf and his team have tested are under 100 nanometers thick, less than 1/1000th the thickness of a human hair.

Phaneuf and his colleagues are currently experimenting by applying ALD films to highly uniform silver test wafers. The uniformity of the wafers allows the researchers to control variables, such as the composition of the silver, in order to create a model of the tarnishing kinetics as sulfur diffuses through the ALD film.

"This is when we get to put on our physicists' hats," Phaneuf says of simplifying the test cases and building a predictive model. The test case results showed two components to the concentration profile, indicating a faster rate of sulfur diffusion through tiny pinholes in the protective oxide film. The researchers are now experimenting with multilayer films that plug these pinholes.

Before the researchers use ALD on prized museum pieces, they will need to demonstrate that the coating can be removed without damaging the artifact, and that the thin film will have a minimal effect on the aesthetic look of the silver. In terms of appearance, ALD films may have another advantage over conventional nitrocellulose lacquer, which can yellow with age. Phaneuf and his colleagues are performing tests to measure how the thickness of the ALD films affects the way silver reflects light.

"Untreated silver beautifully reflects white light," Phaneuf explains. "You don't want the protective film to create interference effects that make it look blue or yellow." The expert eyes of art conservators will also help the researchers judge their success in this respect.

Phaneuf says that collaborating museums may soon allow the team to test their methods on forgeries of silver artifacts, and by year's end the team should be working with genuine pieces. "There is no shortage of complex objects this method might be applied to," Phaneuf notes. "There is a lot of interest now in the conservation community in how nanotechnology and other high technologies can be used to preserve art."

MORE INFORMATION ABOUT THE AVS 59th INTERNATIONAL SYMPOSIUM & EXHIBITION
The Tampa Convention Center is located along the Riverwalk in the heart of downtown Tampa at 333 S. Franklin St., Tampa, Florida, 33602.
USEFUL LINKS:
Main meeting website:
http://www2.avs.org/symposium/AVS59/pages/greetings.html
Technical Program:
http://www.avssymposium.org/
Housing and Travel Information:
http://www2.avs.org/symposium/AVS59/pages/housing_travel.html
PRESS REGISTRATION
The AVS Pressroom will be located in the Tampa Convention Center. Your complimentary media badge will allow you to utilize the pressroom to write, interview, collect new product releases, review material, or just relax. The media badge will also admit you, free of charge, into the exhibit area, lectures, and technical sessions, as well as the Welcome Mixer on Monday evening and the Awards Ceremony and Reception on Wednesday night. Pressroom hours are Monday-Thursday, 8-5 p.m.
To register, please contact:
Della Miller, AVS
E-mail: della@avs.org
This news release was prepared for AVS by the American Institute of Physics (AIP).
ABOUT AVS
Founded in 1953, AVS is a not-for-profit professional society that promotes communication between academia, government laboratories, and industry for the purpose of sharing research and development findings over a broad range of technologically relevant topics. Its symposia and journals provide an important forum for the dissemination of information in many areas of science and technology, enabling a critical gateway for the rapid insertion of scientific breakthroughs into manufacturing realities.
Della Miller
AVS
Phone: 530-896-0477
Email: della@avs.org
Catherine Meyers
AIP
Phone: 301-209-3088
Email: cmeyers@aip.org

Della Miller | EurekAlert!
Further information:
http://www.avs.org

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>