Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology: Color printing reaches new highs

11.04.2013
Color printing at the highest resolution possible is enabled by the use of arrays of metal-coated nanostructures
Commercial laser printers typically produce pin-sharp images with spots of ink about 20 micrometers apart, resulting in a resolution of 1,200 dots per inch (dpi). By shrinking the separation to just 250 nanometers — roughly 100 times smaller — a research team at A*STAR can now print images at an incredible 100,000 dpi, the highest possible resolution for a color image1. These images could be used as minuscule anti-counterfeit tags or to encode high-density data.

To print the image, the team coated a silicon wafer with insulating hydrogen silsesquioxane and then removed part of that layer to leave behind a series of upright posts of about 95 nanometers high. They capped these nanoposts with layers of chromium, silver and gold (1, 15 and 5 nanometers thick, respectively), and also coated the wafer with metal to act as a backreflector.

Each color pixel in the image contained four posts at most, arranged in a square. The researchers were able to produce a rainbow of colors simply by varying the spacing and diameter of the posts to between 50 nanometers and 140 nanometers.

When light hits the thin metal layer that caps the posts, it sends ripples — known as plasmons — running through the electrons in the metal. The size of the post determines which wavelengths of light are absorbed, and which are reflected (see image).

The plasmons in the metal caps also cause electrons in the backreflector to oscillate. “This coupling channels energy from the disks into the backreflector plane, thus creating strong absorption that results in certain colors being subtracted from the visible spectrum,” says Joel Yang, who led the team of researchers at the A*STAR Institute of Materials Research and Engineering and the A*STAR Institute of High Performance Computing.

Printing images in this way makes them potentially more durable than those created with conventional dyes. In addition, color images cannot be any more detailed: two adjacent dots blur into one if they are closer than half the wavelength of the light reflecting from them. Since the wavelength of visible light ranges about 380–780 nanometers, the nanoposts are as close as is physically possible to produce a reasonable range of colors.

Although the process takes several hours, Yang suggests that a template for the nanoposts could rapidly stamp many copies of the image. “We are also exploring novel methods to control the polarization of light with these nanostructures and approaches to improve the color purity of the pixels,” he adds.

The A*STAR-affiliated researchers contributing to this research are from the A*STAR Institute of Materials Research and Engineering and the A*STAR Institute of High Performance Computing

Variation in post size and spacing in the metal array alters which incoming wavelength of light (red, green or blue) is reflected back.

Reproduced from Ref. 1 © 2012 K. Kumar et al.

Journal information

Kumar, K., Duan, H., Hegde, R. S., Koh, S. C. W., Wei, J. N. & Yang, J. K. W. Printing colour at the optical diffraction limit. Nature Nanotechnology 7, 557–561 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6655
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>