Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale Optical Switch Breaks Miniaturization Barrier

17.03.2014

An ultra-fast and ultra-small optical switch has been invented that could advance the day when photons replace electrons in the innards of consumer products ranging from cell phones to automobiles.

The new optical device can turn on and off trillions of times per second. It consists of individual switches that are only one five-hundredths the width of a human hair (200 nanometers) in diameter.


Joe Howell, Vanderbilt University

Graduate student Kent Hallman checking the sample alignment the vapor deposition machine located in Vanderbilt Institute for Nanoscale Science and Engineering's clean room.

This size is much smaller than the current generation of optical switches and it easily breaks one of the major technical barriers to the spread of electronic devices that detect and control light: miniaturizing the size of ultrafast optical switches.

The new device was developed by a team of scientists from Vanderbilt University, University of Alabama-Birmingham, and Los Alamos National Laboratory and is described in the Mar. 12 issue of the journal Nano Letters.

... more about:
»Barrier »Optical »Switch

The ultrafast switch is made out of an artificial material engineered to have properties that are not found in nature. In this case, the “metamaterial” consists of nanoscale particles of vanadium dioxide (VO2) – a crystalline solid that can rapidly switch back and forth between an opaque, metallic phase and a transparent, semiconducting phase – which are deposited on a glass substrate and coated with a “nanomesh” of tiny gold nanoparticles.

The scientists report that bathing these gilded nanoparticles with brief pulses from an ultrafast laser generates hot electrons in the gold nanomesh that jump into the vanadium dioxide and cause it to undergo its phase change in a few trillionths of a second.

“We had previously triggered this transition in vanadium dioxide nanoparticles directly with lasers and we wanted to see if we could do it with electrons as well,” said Richard Haglund, Stevenson Professor of Physics at Vanderbilt, who led the study. “Not only does it work, but the injection of hot electrons from the gold nanoparticles also triggers the transformation with one fifth to one tenth as much energy input required by shining the laser directly on the bare VO2.”

Both industry and government are investing heavily in efforts to integrate optics and electronics, because it is generally considered to be the next step in the evolution of information and communications technology. Intel, Hewlett-Packard and IBM have been building chips with increasing optical functionality for the last five years that operate at gigahertz speeds, one thousandth that of the VO2 switch.

“Vanadium dioxide switches have a number of characteristics that make them ideal for optoelectronics applications,” said Haglund. In addition to their fast speed and small size, they:

• Are completely compatible with current integrated circuit technology, both silicon-based chips and the new “high-K dielectric” materials that the semiconductor industry is developing to continue the miniaturization process that has been a major aspect of microelectronics technology development;

• Operate in the visible and near-infrared region of the spectrum that is optimal for telecommunications applications;

• Generate an amount of heat per operation that is low enough so that the switches can be packed tightly enough to make practical devices: about ten trillionths of a calorie (100 femtojoules) per bit.

“Vanadium dioxide’s amazing properties have been known for more than half a century. At Vanderbilt, we have been studying VO2 nanoparticles for the last ten years, but the material has been remarkably successfully at resisting theoretical explanations,” said Haglund. “It is only in the last few years that intensive computational studies have illuminated the physics that underlies its semiconductor-to-metal transition.”

Vanderbilt graduate students Kannatassen Appavoo and Joyeeta Nag fabricated the metamaterial at Vanderbilt; Appavoo joined forces with University of Alabama, Birmingham graduate student Nathaniel Brady and Professor David Hilton to carry out the ultrafast laser experiments with the guidance of Los Alamos National Laboratory staff scientist Rohit Prasankumar and postdoctoral scholar Minah Seo. The theoretical and computational studies that helped to unravel the complex mechanism of the phase transition at the nanoscale were carried out by postdoctoral student Bin Wang and Sokrates Pantelides, University Distinguished Professor of Physics and Engineering at Vanderbilt.

The university researchers were supported by Defense Threat-Reduction Agency grant HDTRA1-0047, U.S. Department of Energy grant DE-FG02-01ER45916, U.S. Department of Education GAANN Fellowship P200A090143 and National Science Foundation grant DMR-1207241. Portions of the research were performed at the Vanderbilt Institute of Nanoscale Science and Engineering in facilities renovated with NSF grant ARI-R2 DMR-0963361, at the Center for Integrated Nanotechnologies at Los Alamos National Laboratory under USDOE contract DE-AC52-06NA25396) and at Sandia National Laboratories under USDOE contract DE-AC04-94AL85000).

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

Further reports about: Barrier Optical Switch

More articles from Materials Sciences:

nachricht Improving organic transistors that drive flexible and conformable electronics
06.05.2015 | University of Massachusetts at Amherst

nachricht Blending is the Trick: Tailored Pores in Block Copolymer Membranes
06.05.2015 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spray drying the precision particle under the virtual magnifying glass

Spray drying is a common manufacturing process, used in the production of ceramic granulate for technical components or dental prostheses as well as dissolvable medicinal substances, food additives and in the processing of milk into powder. Using computer simulation methodology developed by scientists at the Fraunhofer Institute for Mechanics of Materials IWM, a more comprehensible understanding can now be gained of the behavior of particles in solvent during the spray drying process. This allows powder and granulate manufacturers to specifically adjust the properties of their products while reducing waste.

Previously, it was unusual for granule and powder producers to use granulation simulations to improve their products. For new product development or process...

Im Focus: The random raman laser: A new light source for the microcosmos

Texas A&M University researchers demonstrate how a narrow-band strobe light source for speckle-free imaging has the potential to reveal microscopic forms of life

In modern microscope imaging techniques, lasers are used as light sources because they can deliver fast pulsed and extremely high-intensity radiation to a...

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Green Summit 2015: the summit of the essential

05.05.2015 | Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

 
Latest News

Expedition Genomics Lab: the mobile revolution in genetic analysis

06.05.2015 | Life Sciences

How noise changes the way the brain gets information

06.05.2015 | Life Sciences

A model approach for sustainable phosphorus recovery from wastewater

06.05.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>