Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale composites improve MRI

16.06.2014

Rice, Methodist researchers merge magnetic particles to detect, fight disease

Submicroscopic particles that contain even smaller particles of iron oxide could make magnetic resonance imaging (MRI) a far more powerful tool to detect and fight disease.


Silicon mesoporous particles, aka SiMPS, about 1,000 nanometers across contain thousands of much smaller particles of iron oxide. The SiMPs can be manipulated by magnets and gather at the site of tumors, where they can be heated to kill malignant tumors or trigger the release of drugs. The particles were created by an international team led by scientists at Rice University and The Methodist Hospital Research Institute in Houston.

Credit: Wilson Group/Rice University


Submicrometer particles that contain even smaller particles of iron oxide could make magnetic resonance imaging a far more powerful tool to detect and fight disease, according to researchers at Rice University.

Credit: Ayrat Gizzatov/Rice University

Scientists at Rice University and The Methodist Hospital Research Institute (TMHRI) led an international team of researchers in creating composite particles that can be injected into patients and guided by magnetic fields. Once in position, the particles may be heated to kill malignant tissues or trigger the release of drugs at the site.

The "nanoconstructs" should fully degrade and leave the body within a few days, they reported.

The research appears online in the journal Advanced Functional Materials.

The team led by Rice chemist Lon Wilson and TMHRI scientist Paolo Decuzzi was searching for a way to overcome the challenges presented by iron oxide particles that are good at some things but not others, depending on their size.

Iron oxide particles have many excellent qualities: They can be manipulated with magnets, provide excellent contrast under MRI, create heat when triggered and degrade quickly. But they can't do all that at once. The team needed a way to decouple the functions from their sizes.

The answer was to package thousands of iron oxide particles – with magnetic cores as small as 5 nanometers across – inside larger particles.

The researchers made two such nanoconstructs, embedding iron oxide particles in silicon mesoporous particles (SiMPs) and discoidal polymeric nanoconstructs (DPNs). They knew from previous research that submicron-sized SiMPs and DPNs naturally accumulate within the tumor's blood vessels.

Iron oxide enhances the ability to position and hold the particles in place with magnets, said lead author and Rice graduate student Ayrat Gizzatov. "They get attracted by the magnet, and that induces another dipole-dipole magnetic interaction among the particles and increases their interparticle communication mechanism," he said.

Tests showed iron oxide particles made the nanoconstructs 10 times better than traditional contrast agents with what amounted to significantly lower doses of iron than used in current practice.

The new research also showed that, as a general principle, confining MRI contrast agents (like iron oxide) in geometric structures enhances their relaxivity – the property that makes the agents appear in MRI images. (The shorter the relaxation time, the greater the contrast in the image.)

While the particles are too big to target specific proteins, Gizzatov said it might also be possible to modify them with elements that will increase their accumulation in tumors.

###

Co-authors are Adem Guven of Rice; Jaehong Key, Santosh Aryal, Jeyarama Ananta, Xuewu Liu and Meng Zhong, all of TMHRI; Anna Lisa Palange and Daniele Di Mascolo of TMHRI and the University of Magna Graecia, Italy; Matteo Fasano and Antonio Cervadoro of TMHRI and the University of Turin, Italy; Cinzia Stigliano of TMHRI and the University of Bari, Italy; Eliodoro Chiavazzo and Pietro Asinari of the University of Turin; and Mauro Ferrari of Weill Cornell Medical College, New York.

The Cancer Prevention and Research Institute of Texas, the National Institutes of Health, the Welch Foundation, the Interpolytechnic Doctoral School of Turin, the Italian Ministry of Research, the Doctoral School of the University of Magna Graecia, the European Social Fund and the Regione Calabria supported the research.

Read the abstract at http://onlinelibrary.wiley.com/doi/10.1002/adfm.201400653/abstract

This news release can be found online at http://news.rice.edu/2014/06/16/nanoscale-composites-improve-mri/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Wilson Group: http://www.ruf.rice.edu/~ljwgroup/

Paolo Decuzzi bio: http://www.houstonmethodist.org/paolodecuzzi

Images for download:

http://news.rice.edu/wp-content/uploads/2014/06/0617_MRI-1-WEB.jpg

Silicon mesoporous particles, aka SiMPS, about 1,000 nanometers across contain thousands of much smaller particles of iron oxide. The SiMPs can be manipulated by magnets and gather at the site of tumors, where they can be heated to kill malignant tumors or trigger the release of drugs. The particles were created by an international team led by scientists at Rice University and The Methodist Hospital Research Institute in Houston. (Credit: Wilson Group/Rice University)

http://news.rice.edu/wp-content/uploads/2014/06/0616_MRI-2-WEB.jpg

Submicrometer particles that contain even smaller particles of iron oxide could make magnetic resonance imaging a far more powerful tool to detect and fight disease, according to researchers at Rice University. (Illustration by Ayrat Gizzatov/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go here.

David Ruth | Eurek Alert!

Further reports about: Iron MRI Methodist iron oxide particles particles tumors

More articles from Materials Sciences:

nachricht Engineering phase changes in nanoparticle arrays
26.05.2015 | DOE/Brookhaven National Laboratory

nachricht Nanobionics Supercharge Photosynthesis
22.05.2015 | Department of Energy, Office of Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Technology that feels good

27.05.2015 | Information Technology

A chip placed under the skin for more precise medicine

27.05.2015 | Health and Medicine

Linking superconductivity and structure

27.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>