Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanoquakes Probe New 2-Dimensional Material


Collaborative research between the University of Augsburg, Germany, and UC Riverside, USA, opens up new ways of understanding monolayer films for (opto-)electronic applications

In a step towards a post-graphene era of new materials for electronic applications, an international team of researchers from the University of Augsburg (Germany) and the University of California, Riverside (USA) has found a new and exciting way to elucidate the properties of novel two-dimensional semiconductors. These materials have unique properties that promise better integration of optical communication with traditional silicon-based devices.

UC Riverside student Edwin Preciado (right) and his University of Augsburg colleague Sebastian Hammer working in the cleanroom

© Ludwig Bartels & Hubert Krenner

The researchers fabricated a single-atomic-layer-thin film of molybdenum disulfide (MoS2) on a substrate of lithium niobate (LiNbO3). LiNbO3 is used in many electronic devices dealing with high-frequency signals such as cell phones or radar installations.

Applying electrical pulses to LiNbO3, the researchers created very high frequency sound waves - "surface acoustic waves, SAWs" - that run along the surface of LiNbO3, akin to earthquake tremors on land. Cell phones, for example, use resonances of these surface waves to filter electric signals in a manner similar to a wine glass resonating when a voice hits it at exactly the right pitch.

The Augsburg group is renowned for their pioneering work on the application of nano-earthquakes on a chip in all areas of nanotechnology.

Specifically, the research team used the surface waves of LiNbO3 to listen to how the illumination of LiNbO3 by laser light changes the electric properties of MoS2.

"The tone at which a wine glass resonates changes as you fill it up. If you ping it with a spoon, you can hear that tone. With practice you can guess from the tone how full the wine glass is without looking at the glass," explained Ludwig Bartels, a professor of chemistry who led the team at UC Riverside. "In a similar way, we can 'hear' the LiNbO3 sound waves and infer how much current the laser light allowed to flow in the MoS2. We also fabricated transistor structures onto the MoS2 films and proved that indeed our analysis is correct."

Study results appeared online last week in Nature Communications.

"The well-established nature of the substrates and the processes to create surface acoustic waves makes the novel technique facile and ready to be applied," Bartels said. "In particular, even remote, wireless sensing applications appear to be within reach."

The research project resulted from collaboration between students and researchers at UC Riverside and the University of Augsburg, Germany.

For this project, the Bavarian-Californian team greatly benefited from the complementary expertise between the two universities, allowing the researchers to explore new perspectives. Material fabrication proceeded at UCR followed by device integration and experiments at University of Augsburg.

"It was really exciting to see how our students obtained these fascinating results by combining the 2D materials from California and our world-class expertise in surface acoustic waves," said Hubert Krenner, a member of the Cluster of Excellence Nanosystems Initiative Munich (NIM), Germany, who led the project at the University of Augsburg together with SAW-Pioneer Achim Wixforth.

UCR graduate student Edwin Preciado and University of Augsburg recent graduate Florian J. R. Schülein spearheaded the research project in the research laboratories of Bartels and Krenner, respectively.

"International collaboration and my being able to do research work in Germany was crucial for the success of this project," Preciado said. "I learned much by staying for a few months in Augsburg. It provided me with experience and skills that otherwise I would not have been able to acquire easily."

Likewise, Sebastian Hammer, a graduate student at the University of Augsburg, worked in Bartels's lab this summer fabricating a new batch of devices in an extension of the current project.

The collaborative interaction was facilitated by generous support from the Bavaria-California Technology Center (BaCaTeC). The research was supported by C-SPIN, a STARnet center of the Semiconductor Research Corporation, the U.S. National Science Foundation, the Deutsche Forschungsgemeinschaft and the Nanosystems Initiative Munich (NIM).


Edwin Preciado, Florian J.R. Schülein, Ariana E. Nguyen, David Barroso, Miguel Isarraraz, Gretel von Son, I-Hsi Lu, Wladislaw Michailow, Benjamin Möller, Velveth Klee, John Mann, Achim Wixforth, Ludwig Bartels, and Hubert J. Krenner: Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3; Nature Communications 6, 8593; doi:10.1038/ncomms9593 (2015);


Prof. Dr. Hubert Krenner
Fon +49 821-598-3308

Prof. Dr. Achim Wixforth
Fon +49 821-598-3308

Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg

Weitere Informationen:

Klaus P. Prem | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>