Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoquakes Probe New 2-Dimensional Material

28.10.2015

Collaborative research between the University of Augsburg, Germany, and UC Riverside, USA, opens up new ways of understanding monolayer films for (opto-)electronic applications

In a step towards a post-graphene era of new materials for electronic applications, an international team of researchers from the University of Augsburg (Germany) and the University of California, Riverside (USA) has found a new and exciting way to elucidate the properties of novel two-dimensional semiconductors. These materials have unique properties that promise better integration of optical communication with traditional silicon-based devices.


UC Riverside student Edwin Preciado (right) and his University of Augsburg colleague Sebastian Hammer working in the cleanroom

© Ludwig Bartels & Hubert Krenner

The researchers fabricated a single-atomic-layer-thin film of molybdenum disulfide (MoS2) on a substrate of lithium niobate (LiNbO3). LiNbO3 is used in many electronic devices dealing with high-frequency signals such as cell phones or radar installations.

Applying electrical pulses to LiNbO3, the researchers created very high frequency sound waves - "surface acoustic waves, SAWs" - that run along the surface of LiNbO3, akin to earthquake tremors on land. Cell phones, for example, use resonances of these surface waves to filter electric signals in a manner similar to a wine glass resonating when a voice hits it at exactly the right pitch.

The Augsburg group is renowned for their pioneering work on the application of nano-earthquakes on a chip in all areas of nanotechnology.

Specifically, the research team used the surface waves of LiNbO3 to listen to how the illumination of LiNbO3 by laser light changes the electric properties of MoS2.

"The tone at which a wine glass resonates changes as you fill it up. If you ping it with a spoon, you can hear that tone. With practice you can guess from the tone how full the wine glass is without looking at the glass," explained Ludwig Bartels, a professor of chemistry who led the team at UC Riverside. "In a similar way, we can 'hear' the LiNbO3 sound waves and infer how much current the laser light allowed to flow in the MoS2. We also fabricated transistor structures onto the MoS2 films and proved that indeed our analysis is correct."

Study results appeared online last week in Nature Communications.

"The well-established nature of the substrates and the processes to create surface acoustic waves makes the novel technique facile and ready to be applied," Bartels said. "In particular, even remote, wireless sensing applications appear to be within reach."

The research project resulted from collaboration between students and researchers at UC Riverside and the University of Augsburg, Germany.

For this project, the Bavarian-Californian team greatly benefited from the complementary expertise between the two universities, allowing the researchers to explore new perspectives. Material fabrication proceeded at UCR followed by device integration and experiments at University of Augsburg.

"It was really exciting to see how our students obtained these fascinating results by combining the 2D materials from California and our world-class expertise in surface acoustic waves," said Hubert Krenner, a member of the Cluster of Excellence Nanosystems Initiative Munich (NIM), Germany, who led the project at the University of Augsburg together with SAW-Pioneer Achim Wixforth.

UCR graduate student Edwin Preciado and University of Augsburg recent graduate Florian J. R. Schülein spearheaded the research project in the research laboratories of Bartels and Krenner, respectively.

"International collaboration and my being able to do research work in Germany was crucial for the success of this project," Preciado said. "I learned much by staying for a few months in Augsburg. It provided me with experience and skills that otherwise I would not have been able to acquire easily."

Likewise, Sebastian Hammer, a graduate student at the University of Augsburg, worked in Bartels's lab this summer fabricating a new batch of devices in an extension of the current project.

The collaborative interaction was facilitated by generous support from the Bavaria-California Technology Center (BaCaTeC). The research was supported by C-SPIN, a STARnet center of the Semiconductor Research Corporation, the U.S. National Science Foundation, the Deutsche Forschungsgemeinschaft and the Nanosystems Initiative Munich (NIM).

Reference:

Edwin Preciado, Florian J.R. Schülein, Ariana E. Nguyen, David Barroso, Miguel Isarraraz, Gretel von Son, I-Hsi Lu, Wladislaw Michailow, Benjamin Möller, Velveth Klee, John Mann, Achim Wixforth, Ludwig Bartels, and Hubert J. Krenner: Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3; Nature Communications 6, 8593; doi:10.1038/ncomms9593 (2015); http://dx.doi.org/10.1038/ncomms9593

Contact:

Prof. Dr. Hubert Krenner
hubert.krenner@physik.uni-augsburg.de
Fon +49 821-598-3308
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/emmynoether/

Prof. Dr. Achim Wixforth
achim.wixforth@physik.uni-augsburg.de
Fon +49 821-598-3308
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/

Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms9593

Klaus P. Prem | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>