Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticle synthesis: Joined at the hip

10.05.2012
Hybrid 'Janus' nanoparticles made from gold and titania have high catalytic activity and extraordinary durability

As recently as twenty-five years ago, chemists considered gold to be one of the most inert metallic elements, until the discovery that nanoscale-sized dispersions of gold had high catalytic activity forced a re-think of old principles.


The exposed nature of the gold surface in Janus nanoparticle gold-titania hybrids (left) leads to greater catalytic activity than eccentric (center) and concentric (right) structure. The protective titania coating confers durability on the catalyst.



Copyright : © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Researchers soon found that gold nanoparticles could promote many industrially important reactions, such as the removal of harmful carbon monoxide gas from emission streams. Whilst the benefits of nanoscale gold are well-attested, preparing the material in a durable and reusable form remains a significant challenge that limits its uptake by manufacturers.

Work by the teams of Ming-Yong Han of the Institute of Materials Research and Engineering and Yong-Wei Zhang from the Institute of High Performance Computing both at A*STAR has revealed that the stability of gold nanoparticle catalysts can be enhanced by coating them with protective titania (TiO2) layers. Conceived by co-author Zhi Wei Seh, an A*STAR National Science Scholar, this new technique produces so-called Janus nanostructures that retain nearly all the catalytic activity of bare gold nanoparticles without suffering from irreversible aggregation that diminishes the reactivity of the latter.

Named after the twin-faced Roman god of beginnings and transitions, Janus nanostructures join two or more equal-sized components together through very small junctions — an arrangement that maximizes the active surface area of each substance. The beneficial effects of pairing gold nanoparticles with titania is well known, but until the work by A*STAR researchers, a detailed understanding of the mechanism by which these two species fuse together had proved elusive.

Han and co-workers used an unconventional chelating compound called titanium diisopropoxide bis(acetylacetonate) to nucleate the growth of TiO2 onto gold at extremely slow rates. By carefully controlling the addition of this reagent to rod- and spherical-shaped gold nanoparticles, the researchers observed three distinct nanostructures (see image): a Janus geometry; a partially encapsulating ‘eccentric’ geometry; and a ‘concentric’ core-shell arrangement.

Catalytic experiments revealed that the reactivity and durability of gold-titania Janus structures have unique advantages over other nanoparticles. Due to the exposed nature of their gold surfaces, the former catalyze the reduction of the molecule 4-nitro phenol at much faster rates than eccentric and concentric nanoparticles whose gold surfaces are more confined. Furthermore, the protective TiO2 coating of the hybrid catalysts allowed them to be reused repeatedly with little loss of activity. In contrast, bare gold nanoparticles agglomerated into un-reactive clumps after just five usage cycles.

Futher theoretical investigations by the team revealed that the formation of Janus nanostructures as the energetically stable species is promoted by the addition of smaller volumes of the titania precursor — a finding that may help the researchers generate other metal–oxide hybrids for catalytic applications in the near future.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering and the Institute of High Performance Computing.

References:

Seh, Z. W. et al. Anisotropic growth of titania onto various gold nanostructures: Synthesis, theoretical understanding, and optimization for catalysis. Angewandte Chemie International Edition 50, 10140–10143 (2011).

Eugene Low | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>