Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials: Solar express

19.08.2011
A one-pot synthesis provides a simpler and faster route to highly efficient solar cells

Preventing the recombination of free charges produced when light strikes a solar cell is one of the main goal of engineers attempting to extract the maximum energy conversion efficiency from their devices. One way to achieve this is by building into the cell a ‘heterojunction’ between positive (p) and negative (n) type semiconductors, which allows the light-induced positive and negative charge to escape the cell by moving in opposite directions at the heterojunction interface. Mingyong Han at the A*STAR Institute of Materials Research and Engineering and co-workers1 have now discovered a way to produce high-quality nanoscale heterojunctions, setting the stage for cheaper and more efficient photovoltaic devices.

Nanoscale semiconductor crystals provide enhanced surface area for light absorption and are also cheaper to produce than conventional lithography-patterned cell structures. However, it has been extremely difficult to form high-quality heterojunctions between n- and p-type semiconductors in a way that achieves the intimate inter-crystal contact needed to enhance device performance.

Resolving this problem requires a technique that can bind the two semiconductors together chemically. Previous studies have produced binary nanocrystals with a spherical ‘core–shell’ structure. Unfortunately, heterojunction based on these nanocrystals have low energy conversion efficiency because light has difficulty reaching the inner core. Han and his co-workers overcame this problem by adopting a different route for synthesis.

First, the researchers used a blend of surfactants under hot thermal conditions to produce copper(I) sulfide (CuxS), a well-known p-type semiconductor, in distinctively shaped hexagonal disks roughly 40 nanometers wide and 15 nanometers thick. The well-defined facets of these novel materials enabled the researchers to nucleate the crystallization of n-type cadmium sulfide (CdS) onto the outer edges of the crystals.

Next, through a process known as cation exchange, the researchers persuaded the n-type crystals to grow inward, effectively chemically converting a portion of the CuxS disks into CdS. “This method results in nano-heterostructures with the same morphology as the original material,” says Han. By carefully optimizing the reaction conditions, the researchers transformed the hexagonal nanodisk into a perfectly symmetric, side-by-side heterojunction. Zinc metals were also incorporated into the interface to further tweak its electrical performance.

Han notes that the CuxS–CdS heterostructure is promising for solar cell technology because of its dually accessible surface and an energy band alignment that drives strong charge separation. The team also expects to synthesize a wide range of new semiconductor pairs with this one-pot technique, taking advantage of the system’s extraordinary crystallization properties.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

References

Regulacio, M. D. et al. One-pot synthesis of Cu1.94S–CdS and Cu1.94S–ZnxCd1–xS nanodisc heterostructures. Journal of the American Chemical Society 133, 2052–2055 (2011).

Eugene Low | Research asia research news
Further information:
http://www.imre.a-star.edu.sg/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>