Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials: Solar express

19.08.2011
A one-pot synthesis provides a simpler and faster route to highly efficient solar cells

Preventing the recombination of free charges produced when light strikes a solar cell is one of the main goal of engineers attempting to extract the maximum energy conversion efficiency from their devices. One way to achieve this is by building into the cell a ‘heterojunction’ between positive (p) and negative (n) type semiconductors, which allows the light-induced positive and negative charge to escape the cell by moving in opposite directions at the heterojunction interface. Mingyong Han at the A*STAR Institute of Materials Research and Engineering and co-workers1 have now discovered a way to produce high-quality nanoscale heterojunctions, setting the stage for cheaper and more efficient photovoltaic devices.

Nanoscale semiconductor crystals provide enhanced surface area for light absorption and are also cheaper to produce than conventional lithography-patterned cell structures. However, it has been extremely difficult to form high-quality heterojunctions between n- and p-type semiconductors in a way that achieves the intimate inter-crystal contact needed to enhance device performance.

Resolving this problem requires a technique that can bind the two semiconductors together chemically. Previous studies have produced binary nanocrystals with a spherical ‘core–shell’ structure. Unfortunately, heterojunction based on these nanocrystals have low energy conversion efficiency because light has difficulty reaching the inner core. Han and his co-workers overcame this problem by adopting a different route for synthesis.

First, the researchers used a blend of surfactants under hot thermal conditions to produce copper(I) sulfide (CuxS), a well-known p-type semiconductor, in distinctively shaped hexagonal disks roughly 40 nanometers wide and 15 nanometers thick. The well-defined facets of these novel materials enabled the researchers to nucleate the crystallization of n-type cadmium sulfide (CdS) onto the outer edges of the crystals.

Next, through a process known as cation exchange, the researchers persuaded the n-type crystals to grow inward, effectively chemically converting a portion of the CuxS disks into CdS. “This method results in nano-heterostructures with the same morphology as the original material,” says Han. By carefully optimizing the reaction conditions, the researchers transformed the hexagonal nanodisk into a perfectly symmetric, side-by-side heterojunction. Zinc metals were also incorporated into the interface to further tweak its electrical performance.

Han notes that the CuxS–CdS heterostructure is promising for solar cell technology because of its dually accessible surface and an energy band alignment that drives strong charge separation. The team also expects to synthesize a wide range of new semiconductor pairs with this one-pot technique, taking advantage of the system’s extraordinary crystallization properties.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

References

Regulacio, M. D. et al. One-pot synthesis of Cu1.94S–CdS and Cu1.94S–ZnxCd1–xS nanodisc heterostructures. Journal of the American Chemical Society 133, 2052–2055 (2011).

Eugene Low | Research asia research news
Further information:
http://www.imre.a-star.edu.sg/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>