Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials: Sized-up for strength

01.08.2013
Experiments and numerical simulations show that miniaturized ultra-small platinum cylinders weaken when their constituents are reduced in number

Miniaturizing microscopic metallic objects while enhancing their strength is critical to developing high-performance devices that integrate transistor-like electronics with mechanical components.

When these objects consist of small crystals, or grains, such as polycrystalline nanopillars, their mechanical behavior is difficult to predict because the grains vary in size and orientation. Researchers from the California Institute of Technology, USA, and A*STAR Institute of High Performance Computing (IHPC), Singapore, have now determined how miniaturization and intrinsic granular structure impact the deformation of ultra-small platinum cylinders¹.

The team used a combined experimental and computational approach to overcome the knowledge gap hindering the production of reliable micro- and nano-electromechanical devices. Team member Zhaoxuan Wu from IHPC explains that this approach allowed them to reduce the size of the experimental samples to tens of nanometers. It also allowed them to perform large-scale atomic simulations on comparable nanostructures, which provided a means to directly link structure and mechanical properties. “This is rarely achievable in such studies,” he notes.

The researchers first generated a template by depositing a polymer film on a gold-coated silicon surface and perforating it with nano- to micrometer-sized cylindrical holes. Next, they synthesized the metal nanostructures in these holes from a platinum precursor solution. Dissolving the template then produced nanopillars that displayed well-defined grains of similar sizes and grain boundaries, or interfaces.

Compression experiments on the nanostructures showed that the thinnest nanopillars remained almost cylindrical under low pressure but weakened dramatically, and bent irreversibly, under high pressure. In contrast, wider nanopillars exhibited a smoother deformation and delayed failure. This ‘smaller is weaker’ trend is contrary to the fate observed for metallic single crystals: they become stronger with smaller diameters. Wu and co-workers also found that reducing the number of grains across a nanopillar’s diameter weakened the structure.

In agreement with their experimental results, the researchers’ numerical simulations revealed that the compressed nanopillars gradually underwent reversible and subsequent irreversible deformation (see image). Moreover, the simulations indicated the origin within the nanostructures of the irreversible deformation and dislocation motions. The nanopillars contain a high density of grain boundaries that promote the formation of dislocations. These dislocations, through which a specific type of deformation develops, propagate across an entire grain or from one grain to another inside the cores. Close to the nanopillar surface, the grains easily slide against each other to create atom-sized steps, reducing material strength.

“We are further examining the effects of microstructural flaws and oxidations on the mechanical behavior of nanomaterials,” says Wu.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

References

Gu, X. W., Loynachan, C. N., Wu, Z., Zhang, Y.-W., Srolovitz, D. J. & Greer, J. R. Size-dependent deformation of nanocrystalline Pt nanopillars. Nano Letters 12, 6385–6392 (2012). | article

Associated links
http://www.research.a-star.edu.sg/research/6712

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6712
http://www.researchsea.com

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>