Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials: Sized-up for strength

01.08.2013
Experiments and numerical simulations show that miniaturized ultra-small platinum cylinders weaken when their constituents are reduced in number

Miniaturizing microscopic metallic objects while enhancing their strength is critical to developing high-performance devices that integrate transistor-like electronics with mechanical components.

When these objects consist of small crystals, or grains, such as polycrystalline nanopillars, their mechanical behavior is difficult to predict because the grains vary in size and orientation. Researchers from the California Institute of Technology, USA, and A*STAR Institute of High Performance Computing (IHPC), Singapore, have now determined how miniaturization and intrinsic granular structure impact the deformation of ultra-small platinum cylinders¹.

The team used a combined experimental and computational approach to overcome the knowledge gap hindering the production of reliable micro- and nano-electromechanical devices. Team member Zhaoxuan Wu from IHPC explains that this approach allowed them to reduce the size of the experimental samples to tens of nanometers. It also allowed them to perform large-scale atomic simulations on comparable nanostructures, which provided a means to directly link structure and mechanical properties. “This is rarely achievable in such studies,” he notes.

The researchers first generated a template by depositing a polymer film on a gold-coated silicon surface and perforating it with nano- to micrometer-sized cylindrical holes. Next, they synthesized the metal nanostructures in these holes from a platinum precursor solution. Dissolving the template then produced nanopillars that displayed well-defined grains of similar sizes and grain boundaries, or interfaces.

Compression experiments on the nanostructures showed that the thinnest nanopillars remained almost cylindrical under low pressure but weakened dramatically, and bent irreversibly, under high pressure. In contrast, wider nanopillars exhibited a smoother deformation and delayed failure. This ‘smaller is weaker’ trend is contrary to the fate observed for metallic single crystals: they become stronger with smaller diameters. Wu and co-workers also found that reducing the number of grains across a nanopillar’s diameter weakened the structure.

In agreement with their experimental results, the researchers’ numerical simulations revealed that the compressed nanopillars gradually underwent reversible and subsequent irreversible deformation (see image). Moreover, the simulations indicated the origin within the nanostructures of the irreversible deformation and dislocation motions. The nanopillars contain a high density of grain boundaries that promote the formation of dislocations. These dislocations, through which a specific type of deformation develops, propagate across an entire grain or from one grain to another inside the cores. Close to the nanopillar surface, the grains easily slide against each other to create atom-sized steps, reducing material strength.

“We are further examining the effects of microstructural flaws and oxidations on the mechanical behavior of nanomaterials,” says Wu.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

References

Gu, X. W., Loynachan, C. N., Wu, Z., Zhang, Y.-W., Srolovitz, D. J. & Greer, J. R. Size-dependent deformation of nanocrystalline Pt nanopillars. Nano Letters 12, 6385–6392 (2012). | article

Associated links
http://www.research.a-star.edu.sg/research/6712

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6712
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>