Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials: Peapod power

09.02.2011
A new type of composite material with peapod structures can help improve the performance of lithium-ion batteries

Lithium-ion batteries are used to power a wide range of electronic devices, including computers, cameras, digital audio players and calculators. Tremendous effort has been devoted to the development of lithium-ion batteries, especially in improving the efficiency and integrity of the battery electrodes.


Cobalt oxide nanoparticles embedded in carbon fibers (left) to form peapod-like structures improve the lifetime of electrodes in lithium-ion batteries.
Copyright : Left: 2010 ACS. Right: iStockphoto.com/pixhook

This is because during the discharging and charging processes, lithium ions are repeatedly incorporated into and extracted from the electrodes by alloy formation or chemical conversion. These recurring events are known to cause the progressive degradation of the electrodes, irreversibly damaging battery performance.

Yu Wang at the A*STAR Institute of Chemical and Engineering Sciences and co-workers[1] have now demonstrated an elegant strategy to reduce the degradation problem and increase the capacity retention of lithium-ion batteries over many charge–discharge cycles. The strategy involves the use of a composite material with a peapod structure comprising cobalt oxide (Co3O4) nanoparticles embedded in carbon fibers (see image).

Cobalt oxide is a promising material for anodes in lithium-ion batteries because its capacity for holding ions is higher than that of conventional electrode materials, such as tin. In addition, Co3O4 can be easily converted to LiCoO2, which is the material currently used in commercial cathodes. The researchers made the peapod structures by heating cobalt carbonate hydroxide nanobelts coated with layers of polymerized glucose in an inert atmosphere at 700 ºC and then in air at 250 ºC. Electrodes built using the peapod composite had enhanced lithium storage and capacity retention—delivering 91% of the total possible capacity after 50 charge–discharge cycles.

“The Co3O4 nanoparticles act as active materials to store lithium ions and the hollow carbon fibers protect and prevent the Co3O4 nanoparticles from aggregating and collapsing,” says Wang. The carbon fibers also play the role of conducting electrons from the nanoparticles.

According to Wang, aside from the promising application in lithium-ion batteries, the fabrication of the peapod composite is an achievement in itself, as it is the first time that such isolated magnetic nanoparticles embedded in hollow fibers have been produced. Scanning electron microscopy revealed that the peapod composite exhibits a uniform morphology, with pod lengths of up to several micrometers and pod diameters of as small as 50 nanometers. The researchers believe that their method could be extended to generate encapsulated nanoparticles using a wide range of materials with applications beyond lithium-ion batteries, for example, in gene engineering, catalysis, gas sensing and the manufacture of capacitors and magnets.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences.

Journal information

[1] Wang, Y. et al. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 4, 4753–4761 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6282
http://www.researchsea.com

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>