Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials: Peapod power

09.02.2011
A new type of composite material with peapod structures can help improve the performance of lithium-ion batteries

Lithium-ion batteries are used to power a wide range of electronic devices, including computers, cameras, digital audio players and calculators. Tremendous effort has been devoted to the development of lithium-ion batteries, especially in improving the efficiency and integrity of the battery electrodes.


Cobalt oxide nanoparticles embedded in carbon fibers (left) to form peapod-like structures improve the lifetime of electrodes in lithium-ion batteries.
Copyright : Left: 2010 ACS. Right: iStockphoto.com/pixhook

This is because during the discharging and charging processes, lithium ions are repeatedly incorporated into and extracted from the electrodes by alloy formation or chemical conversion. These recurring events are known to cause the progressive degradation of the electrodes, irreversibly damaging battery performance.

Yu Wang at the A*STAR Institute of Chemical and Engineering Sciences and co-workers[1] have now demonstrated an elegant strategy to reduce the degradation problem and increase the capacity retention of lithium-ion batteries over many charge–discharge cycles. The strategy involves the use of a composite material with a peapod structure comprising cobalt oxide (Co3O4) nanoparticles embedded in carbon fibers (see image).

Cobalt oxide is a promising material for anodes in lithium-ion batteries because its capacity for holding ions is higher than that of conventional electrode materials, such as tin. In addition, Co3O4 can be easily converted to LiCoO2, which is the material currently used in commercial cathodes. The researchers made the peapod structures by heating cobalt carbonate hydroxide nanobelts coated with layers of polymerized glucose in an inert atmosphere at 700 ºC and then in air at 250 ºC. Electrodes built using the peapod composite had enhanced lithium storage and capacity retention—delivering 91% of the total possible capacity after 50 charge–discharge cycles.

“The Co3O4 nanoparticles act as active materials to store lithium ions and the hollow carbon fibers protect and prevent the Co3O4 nanoparticles from aggregating and collapsing,” says Wang. The carbon fibers also play the role of conducting electrons from the nanoparticles.

According to Wang, aside from the promising application in lithium-ion batteries, the fabrication of the peapod composite is an achievement in itself, as it is the first time that such isolated magnetic nanoparticles embedded in hollow fibers have been produced. Scanning electron microscopy revealed that the peapod composite exhibits a uniform morphology, with pod lengths of up to several micrometers and pod diameters of as small as 50 nanometers. The researchers believe that their method could be extended to generate encapsulated nanoparticles using a wide range of materials with applications beyond lithium-ion batteries, for example, in gene engineering, catalysis, gas sensing and the manufacture of capacitors and magnets.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences.

Journal information

[1] Wang, Y. et al. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 4, 4753–4761 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6282
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>