Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials: Formation in a flash

05.07.2012
A new lithography technique enables the production of nanoscale patterns of titania for high-tech applications.
Titanium dioxide, or titania, is an inorganic material commonly used as a whitening agent in food and toothpaste. It is also used as one of the main active ingredients in sunscreens. The properties that make titania useful in commercial applications — namely its whitening ability and high refractive index — are now being exploited in a wide range of technological applications.

One particular area of interest has been the application of titania in dye-sensitized solar cells — devices that can be used to convert sunlight into electricity. Such application often requires the formation of intricate surface patterns, with the key limiting factors for development being cost and speed of processing. Now, Ramakrishnan Ganesan, Mohammad Saifullah and co-workers at the A*STAR Institute of Materials Research and Engineering have described the use of a technique called step-and-flash imprint lithography (SFIL) to produce such patterns on the nanoscale.

“The precursor method to SFIL is thermal nanoimprint lithography, which is extremely time-consuming as it requires temperature-cycling processes to form a pattern,” explains Saifullah. “A mold could be pressed into a heated (and softened) resist material or a liquid precursor could be forced into a mold and then hardened upon heating.”

Newer processes eliminate the need for heating by using irradiation with ultraviolet (UV) light to harden the polymer. Although this process may be ideal for organic polymer materials, it is more problematic when using inorganic materials such as titania as the liquid precursor materials are highly viscous and do not spread easily. As a result, the dispensing nozzle may sometimes become blocked.

The chemicals used to make titania can also be unstable in solution, so the team had to identify a mixture of components that offered a combination of stability and low viscosity. “We found that an allyl functionalized titanium complex was stable in combination with other polymer precursors,” explains Saifullah. The final component of the mixture is a photoinitiator — which starts the polymerization process upon irradiation with UV light.

The mixture was dispensed onto the surface in the form of droplets, and the mold pressed into place to help the liquid spread. Irradiation with UV light results in hardening of the pattern, after which the mold can be removed. A final heating step burns away the organic material, leaving behind a shrunken version of the original pattern made from titania (see image). Significantly, the aspect ratio of the pattern is maintained after the heat-treatment process.

“Our current method is quite specific to titania, but after tackling this most important material, we hope to develop similar procedures for other inorganic materials,” says Saifullah.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

References:

Ganesan, R. et al. Direct patterning of TiO2 using step-and-flash imprint lithography. ACS Nano 6, 1494–1502 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

Further reports about: SFIL UV light formation inorganic material nanomaterials organic material

More articles from Materials Sciences:

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

nachricht New mechanical metamaterials can block symmetry of motion, findings suggest
14.02.2017 | University of Texas at Austin

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>