Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanomaterials: Copying geckos’ toes

Simple templating technology allows researchers to stamp out materials that mimic the adhesive properties of gecko toes

Geckos are famous for their ability to walk up walls and scamper across ceilings. The dry-adhesive surface of geckos’ toes has inspired many attempts to copy this ability in an artificial material. Isabel Rodríguez at the A*STAR Institute of Materials Research and Engineering and co-workers at Nanyang Technological University in Singapore1 have now made one of the closest mimics to gecko toes yet, and shown that it has the properties to match.

Artificial hairs just a few hundred nanometers in diameter mimic the adhesive surface of a gecko’s toe-pads. Copyright : Agency for Science, Technology and Research

The geckos’ ability to cling to surfaces is not due to glue but to the millions of microscopic hairs that coat the surface of their toes. Each hair has a branched, hierarchical structure—toward its tip, each fiber breaks into multiple sub-fibers, which in turn break into hundreds of fibrils 100–200 nanometers in diameter. This structure ensures a high surface area, which helps the gecko to cling to the wall. In addition, the hairs become more flexible as they become thinner, which helps to maximize the number of fibrils in contact with the wall.

Rodríguez and her co-workers have successfully mimicked this hierarchical structure through the use of an anodization technique that allows branched nanopores to be etched controllably into sheets of aluminium foil—a process they used to form templates with which to create the dry adhesive surface. These templates were stamped into sheets of polycarbonate plastic using a process known as capillary force-assisted nanoimprinting, forming a hairy polycarbonate surface.

To evaluate the qualities of the hierarchical hair structure, the researchers created two separate surfaces: one with simple, unbranched hairs; and one in which the hairs branched at their tips to form nanoscopic fibrils (pictured) closely resembling those found on gecko toe-pads. They found that the sheer adhesion force of the branched material was 150% greater than that of the linear material.

“One of the most important findings from the study is the insight of how the fibrils can be made using a simple process,” says Rodríguez. “There have been reports of other hierarchical structures fabricated in polymers, but the fabrication methods they use are rather costly and complicated and not suitable for large scale.” The relatively high cost of previous attempts is due to the way the template is made—a problem that the team have now overcome using their porous alumina template technology. “Our branched, porous template fabrication is straightforward and allows large areas of gecko-like structures to be fabricated at low cost,” she adds.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Ho, A. Y. Y., Yeo, L. P., Lam, Y. C. & Rodríguez, I. Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae. ACS Nano 5, 1897–1906 (2011).

Eugene Low | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>