Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NanoMaster Project Optimises Processes and Up-Scaling for Graphene Delivery

26.09.2014

As it enters its final phase, the NanoMaster Project is reporting exciting results related to graphene and expanded graphite production and the development of novel nanocomposite intermediates.

Over the last eighteen months, the project team have focused on optimising and up-scaling the processes for graphene and expanded graphite production and their subsequent compounding with a range of thermoplastics, in order to demonstrate industrial viability and to deliver sufficient quantities of nanocomposite intermediates for use in the final stages of the project.


As a result of this work, the project team is pleased to report that production of graphene and few-layer graphene has been scaled from 50g at the end of the first year to 2.5kg currently.  Production of expanded graphite and nano-graphite has also been optimised and up-scaled. A densification process was studied to help improve the feeding of these graphite and nano-graphite powders into compounding extruders and to reduce transportation volumes.

Alongside this, optimum lab-scale compounding extrusion parameters have been determined and simulations carried out, subsequently leading to the implementation of pilot-scale production.

A further important activity during stage two was the evaluation of competitor products and comparison with the NanoMaster materials, as Ben Hargreaves, Senior Project manager at NetComposites, the projects lead partner, explains: “We evaluated the NanoMaster materials against a number of commercially available alternatives,  utilising a range of characterisation and analysis techniques. Of those evaluated, the NanoMaster materials were found to be highest quality (in terms of number of layers, presence of defects and uniformity of particle diameter) and able to impart greatest property enhancements to a range of polymers.”

Nanoparticle exposure monitoring has been carried out throughout the development work and detailed reports on the findings have been prepared. Building upon this information (and in combination with an on-going review of hazard literature), guidance on industrial Implementation of the newly developed graphenes, graphites and nanocomposites has been drawn up.

During the final eighteen months of the project, the team will continue to optimise nanocomposite processing parameters - both for conventional processes such as injection moulding and film extrusion; and for additive manufacturing processes, including selective laser sintering and fused deposition modelling.

The project is led by NetComposites, UK, and involves 12 other project partners: Philips Consumer Lifestyle, Holland, Imerys Graphite and Carbon, Switzerland, Röchling Automotive, Italy, Asociación de Investigación de Materiales Plásticos y Conexas, Spain, Aero Engine Controls, UK, Teknologisk Institut, Denmark, Promolding, Holland, Avanzare Innovacion Tecnologica, Spain, Master Build Prototype, France, The Institute of Occupational Medicine, UK, Create It Real Aps, Denmark, and LATI Industria Termoplastici, Italy.

The research leading to these results has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement n° 285718.

About NetComposites 

NetComposites was created at the end of 2000 with the specific objective of developing and exploiting new composite materials technologies. The company is active in applied research, development and consultancy, and also has a strong presence in web-based information, all in the field of composite materials. NetComposites is also well-known for its insight into emerging technologies in composites.

The company has manufacturing and prototyping capability to cater for almost all fibres, resins and composite materials, with a history of successfully developing demonstrator parts using new technologies. The company is experienced in developing successful, commercially exploitable outcomes from research projects.

netcomposites.com

Contact: 

Gemma Smith   

Gemma.smith@netcomposites.com  

Mob: +44 7709 181838

NetComposites Ltd

4A Broom Business Park

Bridge Way

Chesterfield

S41 9QG, UK

Tel: +44 (0)1246 266244

Fax: +44 (0)1246 266249

http://www.netcomposites.com

Gemma Smith | NetComposites Ltd

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>