Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NanoMaster Project Optimises Processes and Up-Scaling for Graphene Delivery

26.09.2014

As it enters its final phase, the NanoMaster Project is reporting exciting results related to graphene and expanded graphite production and the development of novel nanocomposite intermediates.

Over the last eighteen months, the project team have focused on optimising and up-scaling the processes for graphene and expanded graphite production and their subsequent compounding with a range of thermoplastics, in order to demonstrate industrial viability and to deliver sufficient quantities of nanocomposite intermediates for use in the final stages of the project.


As a result of this work, the project team is pleased to report that production of graphene and few-layer graphene has been scaled from 50g at the end of the first year to 2.5kg currently.  Production of expanded graphite and nano-graphite has also been optimised and up-scaled. A densification process was studied to help improve the feeding of these graphite and nano-graphite powders into compounding extruders and to reduce transportation volumes.

Alongside this, optimum lab-scale compounding extrusion parameters have been determined and simulations carried out, subsequently leading to the implementation of pilot-scale production.

A further important activity during stage two was the evaluation of competitor products and comparison with the NanoMaster materials, as Ben Hargreaves, Senior Project manager at NetComposites, the projects lead partner, explains: “We evaluated the NanoMaster materials against a number of commercially available alternatives,  utilising a range of characterisation and analysis techniques. Of those evaluated, the NanoMaster materials were found to be highest quality (in terms of number of layers, presence of defects and uniformity of particle diameter) and able to impart greatest property enhancements to a range of polymers.”

Nanoparticle exposure monitoring has been carried out throughout the development work and detailed reports on the findings have been prepared. Building upon this information (and in combination with an on-going review of hazard literature), guidance on industrial Implementation of the newly developed graphenes, graphites and nanocomposites has been drawn up.

During the final eighteen months of the project, the team will continue to optimise nanocomposite processing parameters - both for conventional processes such as injection moulding and film extrusion; and for additive manufacturing processes, including selective laser sintering and fused deposition modelling.

The project is led by NetComposites, UK, and involves 12 other project partners: Philips Consumer Lifestyle, Holland, Imerys Graphite and Carbon, Switzerland, Röchling Automotive, Italy, Asociación de Investigación de Materiales Plásticos y Conexas, Spain, Aero Engine Controls, UK, Teknologisk Institut, Denmark, Promolding, Holland, Avanzare Innovacion Tecnologica, Spain, Master Build Prototype, France, The Institute of Occupational Medicine, UK, Create It Real Aps, Denmark, and LATI Industria Termoplastici, Italy.

The research leading to these results has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement n° 285718.

About NetComposites 

NetComposites was created at the end of 2000 with the specific objective of developing and exploiting new composite materials technologies. The company is active in applied research, development and consultancy, and also has a strong presence in web-based information, all in the field of composite materials. NetComposites is also well-known for its insight into emerging technologies in composites.

The company has manufacturing and prototyping capability to cater for almost all fibres, resins and composite materials, with a history of successfully developing demonstrator parts using new technologies. The company is experienced in developing successful, commercially exploitable outcomes from research projects.

netcomposites.com

Contact: 

Gemma Smith   

Gemma.smith@netcomposites.com  

Mob: +44 7709 181838

NetComposites Ltd

4A Broom Business Park

Bridge Way

Chesterfield

S41 9QG, UK

Tel: +44 (0)1246 266244

Fax: +44 (0)1246 266249

http://www.netcomposites.com

Gemma Smith | NetComposites Ltd

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>