Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanobionics Supercharge Photosynthesis

22.05.2015

Carbon nanotubes and inorganic nanoparticles enhance photosynthetic activity and stability

A new process has been developed for spontaneously incorporating and assembling carbon nanotubes (CNTs) and oxygen scavenging nanoparticles into chloroplasts, the part of plant cells that conduct photosynthesis – converting light into energy.


Image courtesy of Michael Strano

Nanobionic Leaf: DNA-coated carbon nanotubes (top) incorporated inside chloroplasts in the leaves of living plants (middle) boost plant photosynthesis. Leaves infiltrated with carbon nanotubes (orange) are imaged with a single particle microscope that monitors their near infrared fluorescence (bottom).

Incorporation of CNTs enhanced electron flow associated with photosynthesis by 49% in extracted chloroplasts and by 30% in leaves of living plants, and incorporation of cerium oxide nanoparticles (nanoceria) into extracted chloroplasts significantly reduced concentrations of superoxide, a compound that is toxic to plants.

The Impact

Chloroplasts alone absorb light only from the visible portion of the solar spectrum, allowing access to only about 50% of the incident solar energy radiation, and less than 10% of full sunlight saturates the capacity of the photosynthetic apparatus.

This nano-bio approach is believed to increase the breadth of the solar spectrum that is used to make energy and is expected to contribute to the development of biomimetic materials with enhanced photosynthetic activity and improved stability towards oxidative degradation.

Summary

A novel nanobionic approach has been developed that imparts higher photosynthetic activity to plant leaves and extracted plant chloroplasts, the biological organelles that convert captured carbon dioxide into solar energy. While chloroplasts host all of the biochemical machinery needed for photosynthesis, little is known about how to engineer chloroplasts extracted from plants for long-term, stable solar energy harnessing.

Now, researchers at the Massachusetts Institute of Technology have discovered that highly charged single-walled carbon nanotubes (CNTs) coated with DNA and chitosan (a biomolecule derived from shrimp and other crustacean shells) are able to spontaneously penetrate into chloroplasts. This new lipid exchange envelope penetration (LEEP) process for incorporating the nanostructures involves wrapping CNTs or nanoparticles with highly charged DNA or polymer molecules, enabling them to penetrate into the fatty, hydrophobic membranes that surround chloroplasts.

Incorporation of CNTs into chloroplasts extracted from plants enhanced choloroplast’s photosynthetic activity by 49% compared to the control. When these nanocomposites were incorporated into leaf chloroplasts of living plants, the electron flow associated with photosynthesis was enhanced by 30%. These results are consistent with the idea that semiconducting carbon nanotubes are able to expand the light capture by plant materials to other parts of the solar spectrum such as the green, near infrared and ultraviolet.

Another major limitation in the use of extracted chloroplasts for solar energy applications is that they easily break down due to light- and oxygen-induced damage to the photosynthetic proteins.

When potent oxygen radical scavengers such as cerium oxide nanoparticles (nanoceria) were combined with a highly charged polymer (polyacrylic acid) and incorporated into extracted chloroplasts using the LEEP process, damage to the chloroplasts from superoxides and other reactive oxygen species was dramatically reduced.

This nanobionics approach is expected to contribute to the development of biomimetic materials for light-harvesting and solar energy conversion, as well as biochemical detection with regenerative properties and enhanced efficiency.

Funding

Department of Energy, Office of Science, Basic Energy Sciences program. Additional fellowship support for co-authors was provided by the National Science Foundation (NSF) Postdoctoral Research Fellowship in Biology (J.P.G. and M.P.L), NSF Graduate Research Fellowship (N.F.R.), and Turkey funding sources (DPU-ILTEM and TUBITAK) (F.S).

Publications

J.P. Giraldo, M.P. Landry, S.M. Faltermeier, T.P. McNicholas, M.N. Iverson, A.A. Boghossian, N.F. Reuel, A.J. Hilmer, F. Sen, J. Brew, M.S. Strano, “Plant nanobionics approach to augment photosynthesis and biochemical sensing.” Nature Materials, 13, 400–408, 2014 [DOI: 10.1038/nmat3890].

Contact Information
Kristin Manke
kristin.manke@science.doe.gov

Kristin Manke | newswise
Further information:
http://www.science.doe.gov

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>