Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-velcro clasps heavy metal molecules in its grips

10.09.2012
Researchers develop nano-strips for inexpensive testing of mercury levels in our lakes and oceans with unprecedented sensitivity

Mercury, when dumped in lakes and rivers, accumulates in fish, and often ends up on our plates. A Swiss-American team of researchers led by Francesco Stellacci at the Ecole Polytechnique Fédérale de Lausanne (EPFL) and Bartosz Grzybowski at Northwestern University has devised a simple, inexpensive system based on nanoparticles, a kind of nano-velcro, to detect and trap this toxic pollutant as well as others.

The particles are covered with tiny hairs that can grab onto toxic heavy metals such as mercury and cadmium. This technology makes it possible to easily and inexpensively test for these substances in water and, more importantly, in the fish that we eat. Their new method can measure methyl mercury, the most common form of mercury pollution, at unprecedentedly small attomolar concentrations. The system is outlined in an article appearing September 9, 2012 in the journal Nature Materials.

Methyl mercury, toxic and difficult to monitor

Researchers are particularly interested in detecting mercury. Its most common form, methyl mercury, accumulates as one goes up the food chain, reaching its highest levels in large predatory fish such as tuna and swordfish. In the US, France and Canada, public health authorities advise pregnant women to limit fish consumption because mercury can compromise nervous system development in the developing fetus.

"The problem is that current monitoring techniques are too expensive and complex," explains Constellium Chair holder at EPFL and co-author Francesco Stellacci. "We periodically test levels of mercury in drinking water, and if those results are good, we make the assumption that levels are acceptable in between those testing periods." But industrial discharge fluctuates.

A simple, inexpensive new technology

The technology developed by the Swiss-American team is simple to use. A strip of glass covered with a film of "hairy" nanoparticles is dipped into the water. When an ion – a positively charged particle, such as a methyl mercury or cadmium ion – gets in between two hairs, the hairs close up, trapping the pollutant.

A voltage-measuring device reveals the result; the more ions there are trapped in the nano-velcro, the more electricity it will conduct. So to calculate the number of trapped particles, all one needs to do is measure the voltage across the nanostructure.

By varying the length of the nano-hairs, the scientists can target a particular kind of pollutant. "The procedure is empirical," explains Stellacci. Methyl mercury, fortunately, has properties that make it extremely easy to trap without accidentally trapping other substances at the same time; thus the results are very reliable.

The interesting aspect of this approach is that the 'reading' glass strip could costs less than 10 dollars, while the measurement device will cost only a few hundreds of dollars. The analysis can be done in the field, so the results are immediately available. "With a conventional method, you have to send samples to the laboratory, and the analysis equipment costs several million dollars," notes Stellacci.

Convincing tests in Lake Michigan and Florida

The researchers tested the system in Lake Michigan, near Chicago. Despite the high level of industry in the region, mercury levels were extremely low. "The goal was to compare our measurements to FDA measurements done using conventional methods," explains Stellacci. "Our results fell within an acceptable range."

A mosquito fish from the Everglades in Florida was also tested. This species is not very high on the food chain and thus does not accumulate high levels of mercury in its tissues. "We measured tissue that had been dissolved in acid. The goal was to see if we could detect even minuscule quantities." says Bartosz Grzybowski, Burgess Professor of Chemistry and Director of Non-Equilibrium Energy Research Center at Northwestern University. The United States Geological Survey reported near-identical results after analyzing the same sample.

From quantum to real applications

"I think it is quite incredible," Grzybowski adds, "how the complex principles of quantum tunneling underlying our device translate into such an accurate and practically useful device. It is also notable that our system - through some relatively simple chemical modifications - can be readily adapted to detect other toxic species" Researchers have already demonstrated the detection of cadmium with a very high femtomolar sensitivity.

"With this technology, it will be possible to conduct tests on a much larger scale in the field, or even in fish before they are put on the market," says lead author Eun Seon Cho. This is a necessary public health measure, given the toxic nature of methyl mercury and the extremely complex manner in which it spreads in the environment and accumulates in living tissues.

Ecole Polytechnique Fédérale de Lausanne (EPFL): nanoparticles development

Northwestern University: sensing device conception and implementation – development of quantum mechanical models University of Michigan: modeling the trapping of ions

Funding for this research came from ENI, via the ENI-MIT Alliance; the US Defense Threat Reduction Agency via a grant to MIT and U Michigan; the US Department of Energy via a Nonequilibrium Energy Research Center grant to Northwestern and U Michigan.

Francesco Stellacci | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>