Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-velcro clasps heavy metal molecules in its grips

10.09.2012
Researchers develop nano-strips for inexpensive testing of mercury levels in our lakes and oceans with unprecedented sensitivity

Mercury, when dumped in lakes and rivers, accumulates in fish, and often ends up on our plates. A Swiss-American team of researchers led by Francesco Stellacci at the Ecole Polytechnique Fédérale de Lausanne (EPFL) and Bartosz Grzybowski at Northwestern University has devised a simple, inexpensive system based on nanoparticles, a kind of nano-velcro, to detect and trap this toxic pollutant as well as others.

The particles are covered with tiny hairs that can grab onto toxic heavy metals such as mercury and cadmium. This technology makes it possible to easily and inexpensively test for these substances in water and, more importantly, in the fish that we eat. Their new method can measure methyl mercury, the most common form of mercury pollution, at unprecedentedly small attomolar concentrations. The system is outlined in an article appearing September 9, 2012 in the journal Nature Materials.

Methyl mercury, toxic and difficult to monitor

Researchers are particularly interested in detecting mercury. Its most common form, methyl mercury, accumulates as one goes up the food chain, reaching its highest levels in large predatory fish such as tuna and swordfish. In the US, France and Canada, public health authorities advise pregnant women to limit fish consumption because mercury can compromise nervous system development in the developing fetus.

"The problem is that current monitoring techniques are too expensive and complex," explains Constellium Chair holder at EPFL and co-author Francesco Stellacci. "We periodically test levels of mercury in drinking water, and if those results are good, we make the assumption that levels are acceptable in between those testing periods." But industrial discharge fluctuates.

A simple, inexpensive new technology

The technology developed by the Swiss-American team is simple to use. A strip of glass covered with a film of "hairy" nanoparticles is dipped into the water. When an ion – a positively charged particle, such as a methyl mercury or cadmium ion – gets in between two hairs, the hairs close up, trapping the pollutant.

A voltage-measuring device reveals the result; the more ions there are trapped in the nano-velcro, the more electricity it will conduct. So to calculate the number of trapped particles, all one needs to do is measure the voltage across the nanostructure.

By varying the length of the nano-hairs, the scientists can target a particular kind of pollutant. "The procedure is empirical," explains Stellacci. Methyl mercury, fortunately, has properties that make it extremely easy to trap without accidentally trapping other substances at the same time; thus the results are very reliable.

The interesting aspect of this approach is that the 'reading' glass strip could costs less than 10 dollars, while the measurement device will cost only a few hundreds of dollars. The analysis can be done in the field, so the results are immediately available. "With a conventional method, you have to send samples to the laboratory, and the analysis equipment costs several million dollars," notes Stellacci.

Convincing tests in Lake Michigan and Florida

The researchers tested the system in Lake Michigan, near Chicago. Despite the high level of industry in the region, mercury levels were extremely low. "The goal was to compare our measurements to FDA measurements done using conventional methods," explains Stellacci. "Our results fell within an acceptable range."

A mosquito fish from the Everglades in Florida was also tested. This species is not very high on the food chain and thus does not accumulate high levels of mercury in its tissues. "We measured tissue that had been dissolved in acid. The goal was to see if we could detect even minuscule quantities." says Bartosz Grzybowski, Burgess Professor of Chemistry and Director of Non-Equilibrium Energy Research Center at Northwestern University. The United States Geological Survey reported near-identical results after analyzing the same sample.

From quantum to real applications

"I think it is quite incredible," Grzybowski adds, "how the complex principles of quantum tunneling underlying our device translate into such an accurate and practically useful device. It is also notable that our system - through some relatively simple chemical modifications - can be readily adapted to detect other toxic species" Researchers have already demonstrated the detection of cadmium with a very high femtomolar sensitivity.

"With this technology, it will be possible to conduct tests on a much larger scale in the field, or even in fish before they are put on the market," says lead author Eun Seon Cho. This is a necessary public health measure, given the toxic nature of methyl mercury and the extremely complex manner in which it spreads in the environment and accumulates in living tissues.

Ecole Polytechnique Fédérale de Lausanne (EPFL): nanoparticles development

Northwestern University: sensing device conception and implementation – development of quantum mechanical models University of Michigan: modeling the trapping of ions

Funding for this research came from ENI, via the ENI-MIT Alliance; the US Defense Threat Reduction Agency via a grant to MIT and U Michigan; the US Department of Energy via a Nonequilibrium Energy Research Center grant to Northwestern and U Michigan.

Francesco Stellacci | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>