Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When nano may not be nano

15.09.2009
The same properties of nanoparticles that make them so appealing to manufacturers may also have negative effects on the environment and human health.

However, little is known which particles may be harmful. Part of the problem is determining exactly what a nanoparticle is.

A new analysis by an international team of researchers from the Center for the Environmental Implications of NanoTechnology (CEINT), based at Duke University, argues for a new look at the way nanoparticles are selected when studying the potential impacts on human health and the environment. They have found that while many small particles are considered to be "nano," these materials often do not meet full definition of having special properties that make them different from conventional materials.

Under the prevailing definition, a particle is deemed nano if its diameter is between 1 and 100 nanometers (nm) – about 1/10,000 the diameter of a human hair – and if it has properties that significantly differ from its naturally occurring, or bulk, counterpart.

The special properties of nanoparticles come from their high surface-area-to-volume ratio. They also have a considerably higher percentage of atoms on their surface compared to bulk particles, which can make them more reactive. These man-made materials can be found in a vast array of consumer products, including paints and sunscreens, as well as in water treatment plants and drug delivery systems.

For most of this decade, discussions of nanoparticles have tended to focus more on their size than their properties. However, after reviewing the scientific literature, the Duke-led team believes that the old definition is not specific enough. A definition that focuses on properties is critical, they say, to help scientists determine which particular nanoparticles are the most likely to represent a threat to the environment or human health.

Generally speaking, it is the very smallest particles (less than 30 nanometers) that should receive the most attention in studying the environmental and human health impacts of nanomaterials, according to Mark Wiesner, a Duke professor of civil and environmental engineering and director of the federally funded CEINT.

"There are an infinite number of potential new man-made nanoparticles, so we need to find a way to narrow our efforts to those that have the greatest likelihood of having the unique properties with unique effects," Wiesner said.

"A key question to be answered is whether or not a particular nanoparticle has toxic or hazardous properties that are truly different from identical particles in their bulk form," Wiesner continued. "This question has not been answered. To do so, we need to be speaking the same language when assessing any unique properties of these novel materials."

The results of Wiesner's analysis were published online in the journal Nature Nanotechnology. The study was supported by CEINT, which is jointly funded by the National Science Foundation and Environmental Protection Agency.

Specifically, the researchers found that nanoparticles approaching the 100 nm end of the size spectrum tend to have fewer special properties when compared to their bulk counterparts. Furthermore, they found that nanoparticles smaller than 30 nm tend to exhibit the unique properties that should command increased scrutiny, Wiesner said.

"Many nanoparticles smaller than 30 nanometers undergo drastic changes in their crystalline structure that enhance how the atoms on their surface interact with the environment," Wiesner said.

For example, because of the increased surface-area-to-volume ratio, nanoparticles can be highly reactive with other chemicals in the environment and can also disrupt certain activities within cells.

"While there have been reports of nanoparticle toxicity increasing as the size decreases, it is still uncertain whether this increase in reactivity is harmful to the environment or human safety," Wiesner said. "To settle this issue, toxicological studies should contrast particles that exhibit novel size-dependant properties, particularly concerning their surface reactivity, and those particles that do not exhibit these properties."

Other members of the research team include Melanie Auffan, Duke; Jerome Rose and Jean-Yves Bottero, Aix-Marseille Universite, France; Gregory Lowry, Carnegie Mellon University; and Jean-Pierre Jolivet, Laboratoire de Chimie de la Matiere Condensee de Paris, France.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>