Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-hybrid materials create magnetic effect

14.01.2016

Rice, Montreal Polytechnic study details electromagnetic properties of graphene-boron nitride materials

Developing novel materials from the atoms up goes faster when some of the trial and error is eliminated. A new Rice University and Montreal Polytechnic study aims to do that for graphene and boron nitride hybrids.


The calculated properties of a three-dimensional hybrid of graphene and boron nitride nanotubes would have pseudomagnetic properties, according to researchers at Rice University and Montreal Polytechnic.

Credit: Shahsavari Lab/Rice University


Researchers at Rice University and Montreal Polytechnic analyzed the electromagnetic effects of junctions between nanotubes and graphene sheets. From top to bottom are a graphene/carbon nanotube hybrid with seven-membered junctions, a graphene/carbon nanotube hybrid with eight-membered junctions and a graphene/BNNT hybrid with eight-membered junctions. Credit: Shahsavari Lab/Rice University

Credit: Shahsavari Lab/Rice University

Rice materials scientist Rouzbeh Shahsavari and Farzaneh Shayeganfar, a postdoctoral researcher at Montreal Polytechnic, designed computer simulations that combine graphene, the atom-thick form of carbon, with either carbon or boron nitride nanotubes.

Their hope is that such hybrids can leverage the best aspects of their constituent materials. Defining the properties of various combinations would simplify development for manufacturers who want to use these exotic materials in next-generation electronics. The researchers found not only electronic but also magnetic properties that could be useful.

Their results appear in the journal Carbon.

Shahsavari's lab studies materials to see how they can be made more efficient, functional and environmentally friendly. They include macroscale materials like cement and ceramics as well as nanoscale hybrids with unique properties.

"Whether it's on the macro- or microscale, if we can know specifically what a hybrid will do before anyone goes to the trouble of fabricating it, we can save cost and time and perhaps enable new properties not possible with any of the constituents," Shahsavari said.

His lab's computer models simulate how the intrinsic energies of atoms influence each other as they bond into molecules. For the new work, the researchers modeled hybrid structures of graphene and carbon nanotubes and of graphene and boron nitride nanotubes.

"We wanted to investigate and compare the electronic and potentially magnetic properties of different junction configurations, including their stability, electronic band gaps and charge transfer," he said. "Then we designed three different nanostructures with different junction geometry."

Two were hybrids with graphene layers seamlessly joined to carbon nanotubes. The other was similar but, for the first time, they modeled a hybrid with boron nitride nanotubes. How the sheets and tubes merged determined the hybrid's properties. They also built versions with nanotubes sandwiched between graphene layers.

Graphene is a perfect conductor when its atoms align as hexagonal rings, but the material becomes strained when it deforms to accommodate nanotubes in hybrids. The atoms balance their energies at these junctions by forming five-, seven- or eight-member rings. These all induce changes in the way electricity flows across the junctions, turning the hybrid material into a valuable semiconductor.

The researchers' calculations allowed them to map out a number of effects. For example, it turned out the junctions of the hybrid system create pseudomagnetic fields.

"The pseudomagnetic field due to strain was reported earlier for graphene, but not these hybrid boron nitride and carbon nanostructures where strain is inherent to the system," Shahsavari said. He noted the effect may be useful in spintronic and nano-transistor applications.

"The pseudomagnetic field causes charge carriers in the hybrid to circulate as if under the influence of an applied external magnetic field," he said. "Thus, in view of the exceptional flexibility, strength and thermal conductivity of hybrid carbon and boron nitride systems, we propose the pseudomagnetic field may be a viable way to control the electronic structure of new materials."

All the effects serve as a road map for nanoengineering applications, Shahsavari said.

"We're laying the foundations for a range of tunable hybrid architectures, especially for boron nitride, which is as promising as graphene but much less explored," he said. "Scientists have been studying all-carbon structures for years, but the development of boron nitride and other two-dimensional materials and their various combinations with each other gives us a rich set of possibilities for the design of materials with never-seen-before properties."

Shahsavari is an assistant professor of civil and environmental engineering and of materials science and nanoengineering.

###

Rice supported the research, and computational resources were provided by Calcul Quebec and Compute Canada.

Read the abstract at http://www.sciencedirect.com/science/article/pii/S0008622315305303

This news release can be found online at http://news.rice.edu/2016/01/13/nano-hybrid-materials-create-magnetic-effect/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Shahsavari Group: http://rouzbeh.rice.edu/default.aspx

George R. Brown School of Engineering: http://engineering.rice.edu

Researchers at Rice University and Montreal Polytechnic analyzed the electromagnetic effects of junctions between nanotubes and graphene sheets. From top to bottom are a graphene/carbon nanotube hybrid with seven-membered junctions, a graphene/carbon nanotube hybrid with eight-membered junctions and a graphene/BNNT hybrid with eight-membered junctions. (Credit: Shahsavari Lab/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

More articles from Materials Sciences:

nachricht Reliable molecular toggle switch developed
30.03.2017 | Karlsruher Institut für Technologie (KIT)

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>