Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano Gold Rush: Researchers use tiny gold particles to boost organic solar cell efficiency

17.08.2011
Plasmonic technique helps enhance power conversion by up to 20 percent

In the world of solar energy, organic photovoltaic solar cells have a wide range of potential applications, but they are still considered an upstart. While these carbon-based cells, which use organic polymers or small molecules as semiconductors, are much thinner and less expensive to produce than conventional solar cells made with inorganic silicon wafers, they still lag behind in their ability to efficiently convert sunlight into electricity.

Now, UCLA researchers and their colleagues from China and Japan have shown that by incorporating gold nanoparticles into these organic photovoltaics — taking advantage of the plasmonic effect, by which metal helps to enhance the absorption of sunlight — they can significantly improve the cells' power conversion.

In a paper recently published in ACS Nano, the team of researchers, led by Yang Yang, a professor of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science and director of the Nano Renewable Energy Center at UCLA's California NanoSystems Institute, demonstrate how they sandwiched a layer of gold nanoparticles between two light-absorbing subcells in a tandem polymer solar cell in order to harvest a greater fraction of the solar spectrum.

They found that by employing the interconnecting gold-nanoparticle layer, they were able to enhance power conversion by as much as 20 percent. The gold nanoparticles create a strong electromagnetic field inside the thin organic photovoltaic layers by a plasmonic effect, which concentrates light so that much more of it can be absorbed by the subcells.

The team is the first to report a plasmonic-enhanced polymer tandem solar cell, having overcome the difficulties involved in incorporating metal nanostructures into the overall device structure.

"We have successfully demonstrated a highly efficient plasmonic polymer tandem solar cell by simply incorporating gold nanoparticles layer between two subcells," Yang said. "The plasmonic effect happening in the middle of the interconnecting layer can enhance both the top and bottom subcells simultaneously — a 'sweet spot' — leading to an improvement in the power conversion efficiency of the tandem solar cell from 5.22 percent to 6.24 percent. The enhancement ratio is as high as 20 percent."

The research team included Xing Wang Zhang from the Key Lab of Semiconductor Materials Science at the Institute of Semiconductors at Beijing's Chinese Academy of Science and Ziruo Hong from the Graduate School of Science and Engineering at Japan's Yamagata University.

Experimental and theoretical results demonstrate that the enhancement effect was attained from local near-field enhancement of the gold nanoparticles. The results show that the plasmonic effect has great potential for the future development of polymer solar cells. The team's proposed interlayer structures as an open platform can be applied to various polymer materials, opening up opportunities for highly efficient, multi-stacked tandem solar cells.

The research was financially supported by grants from the U.S. Office of Naval Research and the National Science Foundation.

The team also included Jun Yang, Jingbi You, Chun-Chao Chen, and Wan-Ching Hsu of the UCLA Department of Materials Science and Engineering and the California NanoSystems Institute.

Yang was recently named the holder of the Carol and Lawrence E. Tannas Jr. Endowed Chair in Engineering. This chair is the first in the world dedicated to the area of electronic information displays.

The California NanoSystems Institute at UCLA is an integrated research facility located at UCLA and UC Santa Barbara. Its mission is to foster interdisciplinary collaborations in nanoscience and nanotechnology; to train a new generation of scientists, educators and technology leaders; to generate partnerships with industry; and to contribute to the economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California. An additional $850 million of support has come from federal research grants and industry funding. CNSI members are drawn from UCLA's College of Letters and Science, the David Geffen School of Medicine, the School of Dentistry, the School of Public Health and the Henry Samueli School of Engineering and Applied Science. They are engaged in measuring, modifying and manipulating atoms and molecules — the building blocks of our world. Their work is carried out in an integrated laboratory environment. This dynamic research setting has enhanced understanding of phenomena at the nanoscale and promises to produce important discoveries in health, energy, the environment and information technology.

For more news, visit UCLA Newsroom and UCLA News|Week and follow us on Twitter.

Jennifer Marcus | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>