Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano Gold Rush: Researchers use tiny gold particles to boost organic solar cell efficiency

17.08.2011
Plasmonic technique helps enhance power conversion by up to 20 percent

In the world of solar energy, organic photovoltaic solar cells have a wide range of potential applications, but they are still considered an upstart. While these carbon-based cells, which use organic polymers or small molecules as semiconductors, are much thinner and less expensive to produce than conventional solar cells made with inorganic silicon wafers, they still lag behind in their ability to efficiently convert sunlight into electricity.

Now, UCLA researchers and their colleagues from China and Japan have shown that by incorporating gold nanoparticles into these organic photovoltaics — taking advantage of the plasmonic effect, by which metal helps to enhance the absorption of sunlight — they can significantly improve the cells' power conversion.

In a paper recently published in ACS Nano, the team of researchers, led by Yang Yang, a professor of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science and director of the Nano Renewable Energy Center at UCLA's California NanoSystems Institute, demonstrate how they sandwiched a layer of gold nanoparticles between two light-absorbing subcells in a tandem polymer solar cell in order to harvest a greater fraction of the solar spectrum.

They found that by employing the interconnecting gold-nanoparticle layer, they were able to enhance power conversion by as much as 20 percent. The gold nanoparticles create a strong electromagnetic field inside the thin organic photovoltaic layers by a plasmonic effect, which concentrates light so that much more of it can be absorbed by the subcells.

The team is the first to report a plasmonic-enhanced polymer tandem solar cell, having overcome the difficulties involved in incorporating metal nanostructures into the overall device structure.

"We have successfully demonstrated a highly efficient plasmonic polymer tandem solar cell by simply incorporating gold nanoparticles layer between two subcells," Yang said. "The plasmonic effect happening in the middle of the interconnecting layer can enhance both the top and bottom subcells simultaneously — a 'sweet spot' — leading to an improvement in the power conversion efficiency of the tandem solar cell from 5.22 percent to 6.24 percent. The enhancement ratio is as high as 20 percent."

The research team included Xing Wang Zhang from the Key Lab of Semiconductor Materials Science at the Institute of Semiconductors at Beijing's Chinese Academy of Science and Ziruo Hong from the Graduate School of Science and Engineering at Japan's Yamagata University.

Experimental and theoretical results demonstrate that the enhancement effect was attained from local near-field enhancement of the gold nanoparticles. The results show that the plasmonic effect has great potential for the future development of polymer solar cells. The team's proposed interlayer structures as an open platform can be applied to various polymer materials, opening up opportunities for highly efficient, multi-stacked tandem solar cells.

The research was financially supported by grants from the U.S. Office of Naval Research and the National Science Foundation.

The team also included Jun Yang, Jingbi You, Chun-Chao Chen, and Wan-Ching Hsu of the UCLA Department of Materials Science and Engineering and the California NanoSystems Institute.

Yang was recently named the holder of the Carol and Lawrence E. Tannas Jr. Endowed Chair in Engineering. This chair is the first in the world dedicated to the area of electronic information displays.

The California NanoSystems Institute at UCLA is an integrated research facility located at UCLA and UC Santa Barbara. Its mission is to foster interdisciplinary collaborations in nanoscience and nanotechnology; to train a new generation of scientists, educators and technology leaders; to generate partnerships with industry; and to contribute to the economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California. An additional $850 million of support has come from federal research grants and industry funding. CNSI members are drawn from UCLA's College of Letters and Science, the David Geffen School of Medicine, the School of Dentistry, the School of Public Health and the Henry Samueli School of Engineering and Applied Science. They are engaged in measuring, modifying and manipulating atoms and molecules — the building blocks of our world. Their work is carried out in an integrated laboratory environment. This dynamic research setting has enhanced understanding of phenomena at the nanoscale and promises to produce important discoveries in health, energy, the environment and information technology.

For more news, visit UCLA Newsroom and UCLA News|Week and follow us on Twitter.

Jennifer Marcus | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>