Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017

Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors

We normally associate conduction of electricity with metals. However, some of the high measured conductivities are found in certain organic molecular crystals. Metallic, semiconducting and even superconducting properties can be achieved in these materials, which have interested scientists for decades.


Electron density distribution of the frontier orbital of a TMTTF molecule. Electrons of the constituent atoms of the molecule can be considered as either core electrons, which have no interactions with the surroundings, or electrons of frontier orbitals, which determine many physical properties of the molecule. We succeeded in visualizing the frontier molecular orbital distribution of a TMTTF by precise structural analysis using a core differential Fourier synthesis (CDFS) method.

Credit: Shunsuke Kitou

Changing temperature or pressure causes phase transitions in the crystal structure of molecular conductors and their related conduction properties. Scientists can usually determine the crystal structure using X-ray diffraction. However, structural change accompanying phase transition in a particular organic crystal (TMTTF)2PF6 has defied examination for almost 40 years.

Now, a research team at Nagoya University has finally explained the mysterious structural changes of this phase transition and its related electronic behavior.

"Researchers have questioned that the TMTTF (tetramethyltetrathiafulvalene) salt shows a charge disproportionation transition at 67 Kelvin but no relevant changes in its crystal structure. This transition is a long-standing mystery known as a 'structure-less transition'," explains lead author Shunsuke Kitou.

TMTTF is an organic donor that is also found in some organic superconductors. Just above the temperature that liquid nitrogen freezes, this organic crystal behaves as an insulator. But as the temperature is lowered it goes through electronic and magnetic changes.

Until now these structural changes were too small to measure directly. Using the X-ray source at SPring8, in Hyogo Japan, the team could precisely determine the crystal structure at each stage. The structure-less transition involves the formation of a two-dimensional Wigner crystal, based on a change in the distribution pattern of electrons in the structure.

"We have precisely characterized the subtle structural changes across this transition and finally provided a complete physical explanation for the apparent unchanging structure of this organic conductor," says group leader Hiroshi Sawa. "Accurate crystallographic data is still lacking for many organic conductors and we hope our findings will inspire other groups to look more closely at these systems. A better understanding of their complex behavior could pave the way to a range of new functional electronic materials."

###

The article, "Successive Dimensional Transition in (TMTTF)2PF6 Revealed by Synchrotron X-ray Diffraction," was published in Physical Review Letters. https://doi.org/10.1103/PhysRevLett.119.065701

Koomi Sung | EurekAlert!

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>