Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multifunctional coatings. Charged up and ready to connect

24.10.2013
An innovative strategy produces positively and negatively charged polymer chains ideal for generating multifunctional coatings

Gelatin, a well-known food ingredient, belongs to a class of molecules called polyampholytes that contain both positively and negatively charged components. When a polyampholyte is dissolved in liquid, this electronic structure imparts remarkable properties such as pH-dependent viscosity; it can also form a hydrogel.


Polymers formed from ionic precursors have an unusual chemical reactivity that could find application in antifouling coatings for ships.
© andrej67/iStock/Thinkstock

Now, Satyasankar Jana, Anbanandam Parthiban and co-workers from the A*STAR Institute of Chemical and Engineering Sciences in Singapore have developed a polyampholyte with multiple capabilities — including the ability to turn ordinary plastics into novel coating materials, thanks to unexpectedly strong interactions between the polymer’s charged sites1.

Mixing cationic and anionic salts known as ion pair comonomers (IPCs) is one of the best ways to synthesize polyampholytes. Most IPCs are made from unsaturated molecular ions with very similar chemical reactivity. This approach generates long, charge-neutral chains with application in fields such as chromatographic protein separation.

Jana, Parthiban and co-workers, however, implemented a different strategy. They investigated polymerization of IPCs with unequal chemical reactivity: a cationic nitrogen-bearing ring known as vinylimidazole and a styrenesulfonate. The intense positive charges within vinylimidazole-based polymers mean that these polymers are frequently employed as ion-conductive materials; the weaker styrenesulfonate anion, on the other hand, finds use in surfactants and polyelectrolytes.

The team suspected that these IPCs, which turn into mobile ionic liquids at high temperatures, could create polyampholytes with asymmetric charge properties and unusual molecular interactions never encountered before.

By using free radical reactions to construct the vinylimidazole-based polyampholytes, the researchers observed that their hunch was correct: the polymers assembled into chains with immobilized cationic and anionic units. In fact, the strong intermolecular forces in these polyampholytes rendered them insoluble in both organic and aqueous solvents. Switching to a more controlled chain-transfer polymerization method yielded asymmetric chains with improved solubility characteristics.

The team exploited the active charge properties of their polymers to turn lightweight poly(methyl methacrylate), or PMMA, plastics into ionically cross-linked materials. Mixing a small proportion of the asymmetric polyampholyte into PMMA formed a three-dimensional polymer network as the ionic sites reacted with one another and with the acrylic chains. The authors note that this kind of ionic cross-linking can have beneficial impacts on the stiffness and fracture behavior of PMMA, and opens the door to other applications.

The highly ionic nature of these polymers makes this approach useful for possible antifouling materials and layer-by-layer coating technology,” says Jana. “We are also trying to synthesize novel substances with this procedure, such as ionically cross-linked hydrogels.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Associated links
http://www.research.a-star.edu.sg/research/6783
Journal information
Jana, S., Vasantha, V. A., Stubbs, L. P., Parthiban, A. & Vancso, J. G. Vinylimidazole-based asymmetric ion pair comonomers: Synthesis, polymerization studies and formation of ionically crosslinked PMMA. Journal of Polymer Science Part A: Polymer Chemistry 51, 3260–3273 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6783
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>