Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multifunctional coatings. Charged up and ready to connect

24.10.2013
An innovative strategy produces positively and negatively charged polymer chains ideal for generating multifunctional coatings

Gelatin, a well-known food ingredient, belongs to a class of molecules called polyampholytes that contain both positively and negatively charged components. When a polyampholyte is dissolved in liquid, this electronic structure imparts remarkable properties such as pH-dependent viscosity; it can also form a hydrogel.


Polymers formed from ionic precursors have an unusual chemical reactivity that could find application in antifouling coatings for ships.
© andrej67/iStock/Thinkstock

Now, Satyasankar Jana, Anbanandam Parthiban and co-workers from the A*STAR Institute of Chemical and Engineering Sciences in Singapore have developed a polyampholyte with multiple capabilities — including the ability to turn ordinary plastics into novel coating materials, thanks to unexpectedly strong interactions between the polymer’s charged sites1.

Mixing cationic and anionic salts known as ion pair comonomers (IPCs) is one of the best ways to synthesize polyampholytes. Most IPCs are made from unsaturated molecular ions with very similar chemical reactivity. This approach generates long, charge-neutral chains with application in fields such as chromatographic protein separation.

Jana, Parthiban and co-workers, however, implemented a different strategy. They investigated polymerization of IPCs with unequal chemical reactivity: a cationic nitrogen-bearing ring known as vinylimidazole and a styrenesulfonate. The intense positive charges within vinylimidazole-based polymers mean that these polymers are frequently employed as ion-conductive materials; the weaker styrenesulfonate anion, on the other hand, finds use in surfactants and polyelectrolytes.

The team suspected that these IPCs, which turn into mobile ionic liquids at high temperatures, could create polyampholytes with asymmetric charge properties and unusual molecular interactions never encountered before.

By using free radical reactions to construct the vinylimidazole-based polyampholytes, the researchers observed that their hunch was correct: the polymers assembled into chains with immobilized cationic and anionic units. In fact, the strong intermolecular forces in these polyampholytes rendered them insoluble in both organic and aqueous solvents. Switching to a more controlled chain-transfer polymerization method yielded asymmetric chains with improved solubility characteristics.

The team exploited the active charge properties of their polymers to turn lightweight poly(methyl methacrylate), or PMMA, plastics into ionically cross-linked materials. Mixing a small proportion of the asymmetric polyampholyte into PMMA formed a three-dimensional polymer network as the ionic sites reacted with one another and with the acrylic chains. The authors note that this kind of ionic cross-linking can have beneficial impacts on the stiffness and fracture behavior of PMMA, and opens the door to other applications.

The highly ionic nature of these polymers makes this approach useful for possible antifouling materials and layer-by-layer coating technology,” says Jana. “We are also trying to synthesize novel substances with this procedure, such as ionically cross-linked hydrogels.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Associated links
http://www.research.a-star.edu.sg/research/6783
Journal information
Jana, S., Vasantha, V. A., Stubbs, L. P., Parthiban, A. & Vancso, J. G. Vinylimidazole-based asymmetric ion pair comonomers: Synthesis, polymerization studies and formation of ionically crosslinked PMMA. Journal of Polymer Science Part A: Polymer Chemistry 51, 3260–3273 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6783
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>