Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multifunctional coatings. Charged up and ready to connect

24.10.2013
An innovative strategy produces positively and negatively charged polymer chains ideal for generating multifunctional coatings

Gelatin, a well-known food ingredient, belongs to a class of molecules called polyampholytes that contain both positively and negatively charged components. When a polyampholyte is dissolved in liquid, this electronic structure imparts remarkable properties such as pH-dependent viscosity; it can also form a hydrogel.


Polymers formed from ionic precursors have an unusual chemical reactivity that could find application in antifouling coatings for ships.
© andrej67/iStock/Thinkstock

Now, Satyasankar Jana, Anbanandam Parthiban and co-workers from the A*STAR Institute of Chemical and Engineering Sciences in Singapore have developed a polyampholyte with multiple capabilities — including the ability to turn ordinary plastics into novel coating materials, thanks to unexpectedly strong interactions between the polymer’s charged sites1.

Mixing cationic and anionic salts known as ion pair comonomers (IPCs) is one of the best ways to synthesize polyampholytes. Most IPCs are made from unsaturated molecular ions with very similar chemical reactivity. This approach generates long, charge-neutral chains with application in fields such as chromatographic protein separation.

Jana, Parthiban and co-workers, however, implemented a different strategy. They investigated polymerization of IPCs with unequal chemical reactivity: a cationic nitrogen-bearing ring known as vinylimidazole and a styrenesulfonate. The intense positive charges within vinylimidazole-based polymers mean that these polymers are frequently employed as ion-conductive materials; the weaker styrenesulfonate anion, on the other hand, finds use in surfactants and polyelectrolytes.

The team suspected that these IPCs, which turn into mobile ionic liquids at high temperatures, could create polyampholytes with asymmetric charge properties and unusual molecular interactions never encountered before.

By using free radical reactions to construct the vinylimidazole-based polyampholytes, the researchers observed that their hunch was correct: the polymers assembled into chains with immobilized cationic and anionic units. In fact, the strong intermolecular forces in these polyampholytes rendered them insoluble in both organic and aqueous solvents. Switching to a more controlled chain-transfer polymerization method yielded asymmetric chains with improved solubility characteristics.

The team exploited the active charge properties of their polymers to turn lightweight poly(methyl methacrylate), or PMMA, plastics into ionically cross-linked materials. Mixing a small proportion of the asymmetric polyampholyte into PMMA formed a three-dimensional polymer network as the ionic sites reacted with one another and with the acrylic chains. The authors note that this kind of ionic cross-linking can have beneficial impacts on the stiffness and fracture behavior of PMMA, and opens the door to other applications.

The highly ionic nature of these polymers makes this approach useful for possible antifouling materials and layer-by-layer coating technology,” says Jana. “We are also trying to synthesize novel substances with this procedure, such as ionically cross-linked hydrogels.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Associated links
http://www.research.a-star.edu.sg/research/6783
Journal information
Jana, S., Vasantha, V. A., Stubbs, L. P., Parthiban, A. & Vancso, J. G. Vinylimidazole-based asymmetric ion pair comonomers: Synthesis, polymerization studies and formation of ionically crosslinked PMMA. Journal of Polymer Science Part A: Polymer Chemistry 51, 3260–3273 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6783
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>