Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-talented textiles

22.03.2012
Innovative regenerated cellulose fibres provide good thermal insulation and are
really absorbent

In the ZIM research project KF2136709HGO, researchers from the internationally renowned Hohenstein Institute in Bönnigheim worked with Kelheim Fibres, one of the leading manufacturers of special viscose fibres, to investigate the many and diverse ways of using newly developed multifunctional regenerated cellulose fibres.


Greatly enlarged image of a cross-section of regenerated cellulose fibres.
©Kelheim Fibres

The ability of functionalised regenerated cellulose fibres to absorb extremely high quantities of water means that they can be used in very many different ways. The aim of the research project was to improve the moisture management of existing clothing systems for protection against heat and cold by using a newly developed hydrophilic fleece. The researchers also hoped to open up additional areas of application for the new fibres in the fields of medicine, cosmetics and cleaning.

The clothing that is currently available on the market to provide protection against heat and cold does protect the human body well from low temperatures. However, the most common combinations of materials are only to a limited extent able to absorb significant quantities of perspiration and transport it effectively away from the body. This means that, especially when switching between hot and cold rooms, or under great physical strain, the wearer experiences an unpleasant wet sensation.

In these situations, using a buffer layer made of "super-hydrophilic" fleece, which is particularly good at storing liquid sweat, can be a great help and make the wearer feel much more comfortable.

The Hohenstein researchers investigated many other ways in which the new fibres could be used because of their ability to absorb great quantities of water, in addition to clothing for heat and cold protection.

In the fields of medicine and cosmetics, for example, not only water but medical or cosmetic substances could be deliberately incorporated in the fibres, to be released later for a specific purpose.

Since the fibres take on a gel-like consistency when they are damp, they could also be used for medical purposes in dressings, wet wound healing and the treatment of severe burns.

Another possible area of application for the absorbent fleece is to make cloths or other products for soaking up liquids. This ongoing research project is extremely interesting and promising for many different industries.

As a result of this investigation, the Hohenstein researchers expect that, on the basis of their fundamental research, it will be possible greatly to improve the comfort and thermophysiological quality of protective clothing without having a detrimental effect on its thermal insulation properties.

In addition, the Hohenstein scientists and their industrial partner Kelheim Fibres are also hoping, in view of the many possible applications for the novel fibres, to be able to open up new markets and develop other innovative products.

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de/en/inline/pressrelease_10818.xhtml

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>