Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Motorised microscopic matchsticks move in water with sense of direction

11.09.2013
Chemists, physicists and computer scientists at the University of Warwick have come together to devise a new powerful and very versatile way of controlling the speed and direction of motion of microscopic structures in water using what they have dubbed chemically ‘motorised microscopic matchsticks’.

Before now most research seeking to influence the direction of motion of microscopic components have had to use outside influences such as a magnetic field or the application of light. The University of Warwick team have now found a way to do it by simply adding a chemical in a specific spot and then watching the microscopic matchstick particles move towards it, a phenomenon known as chemotaxis.

The research published in the journal Materials Horizons (RSC) in a paper entitled Chemotaxis of catalytic silica–manganese oxide “matchstick” particles found that by adding a small amount of a catalyst to the head of a set microscopic rods, they could then cause the rods to be propelled towards the location of an appropriate ‘chemical fuel’ that was then added to a mixture.

For the purposes of this experiment the researchers placed silica–manganese oxide ‘heads’ on the matchstick material and introduced hydrogen peroxide as the chemical fuel in one particular place.

They placed the ‘matchsticks’ in a mixture alongside ordinary polymer microspheres.

When the hydrogen peroxide was added the microspheres continued to move in the direction of convection currents or under Brownian motion but the matchsticks were clearly rapidly propelled towards the chemical gradient where the hydrogen peroxide could be found.

The reaction was so strong that more than half of the matchstick particles did not reverse their orientation once over their 90 seconds of travel towards the hydrogen peroxide – even though they were contending with significant convection and Brownian rotation.Dr Stefan Bon

University of Warwick research chemical engineer Dr Stefan Bon who led the research said:

“We choose high aspect ratio rod-like particles as they are a favourable geometry for chemotactic swimmers, as seen for example in nature in the shapes of certain motile organisms”

“We placed the ‘engine’ that drives the self-propulsion as a matchstick head on the rods because having the engine in the ‘head’ of the rod helps us align the rod along the direction of travel, would also show the asymmetry perpendicular to the direction of self-propulsion, and at the same time it maintains rotational symmetry parallel to the plane of motion.

“Our approach is very versatile and should allow for future fabrication of micro-components of added complexity.

“The ability to direct motion of these colloidal structures can form a platform for advances in supracolloidal science, the self-assembly of small objects.

“It may even provide some insight into how rod shapes were selected for self-propelled microscopic shapes in the natural world.”

Notes for editors:

Dr Stefan Bon can be contacted on S.Bon@warwick.ac.ukor +44 (0)2476 574009 or + 44 (0)7736932205

Or you can contact Anna Blackaby, University of Warwick press officer, on +44 (0)2476 575910 or +44 (0) 7785 433155 or a.blackaby@warwick.ac.uk

The research has just been published in the journal “Materials Horizons” in a paper entitled Chemotaxis of catalytic silica–manganese oxide “matchstick” particles DOI: 10.1039/c3mh00003f

The authors wish to thank Peter W. Dunne, David Burnett, and Luke A. Rochford for help with XRD analysis. We thank EPSRC, Chemistry Innovation, and AkzoNobel for funding (ARM). Some of the equipment used was funded by West Midlands AM2 Science City initiative.

Dr Stefan Bon can be contacted on S.Bon@warwick.ac.ukor +44 (0)2476 574009 or + 44 (0)7736932205

Or you can contact Anna Blackaby, University of Warwick press officer, on +44 (0)2476 575910 or +44 (0) 7785 433155 or a.blackaby@warwick.ac.uk

Anna Blackaby | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>