Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Molecules With Many Branches Will Help Unleash Potential Of Nanotechnology

27.10.2008
Materials science and the pharmaceutical industry could soon be revolutionized by emerging nanotechnologies based on designer molecules with long complex tree-and branch structures.

Such molecules offer almost limitless scope for design of bespoke compounds for specific applications in disease therapy, for novel materials such as resins, as well as electronic displays, and energy storage. Almost every field involving design and synthesis of chemical compounds will be transformed by the arrival of technologies allowing nanoscale design of these branched molecules, known as hyperbranched polymers.

The great potential of the field, and corresponding challenges in exploiting it, were discussed at a recent workshop organized by the European Science Foundation (ESF)(Convenor: Dr. K. Karatasos, Co-Convenor: Dr. Alexey Lyulin). The workshop revealed the great scope of hyperbranched polymers and discussed how Europe in particular should respond to the challenges, such as identifying research priorities from the huge range of possibilities.

But the immediate challenge is to develop an underlying research infrastructure for building the technologies required to develop new products, for this is very much an applied field of science. This will require uniting the two sides of the field, those experimenting with these compounds in the laboratory, and theoretical chemists simulating novel hyperbranches molecules on a computer, as Konstantinos Karatasos, the workshop's convenor, pointed out.

"In principle these two communities do not interact at a desirable level," said Karatasos. "This was partly attributed to the fact that there is a lack of a "common language" between the two sides so that information can be exchanged in an efficient manner. It was proposed that this deficiency can be remedied to a certain degree, when people with different backgrounds work in a multidisciplinary environment where contacts between them are realized in a more frequent basis so that familiarization with each other's work and exchange of ideas becomes easier."

Hyperbranched polymers have already been used to develop materials such as resins and wood coatings with improved durability and resistance to abrasion. These exploit the fact that molecules with multiple branches tend to cling together more strongly, making them resistant to wear. But hyperbranched polymers also have other properties, such as low viscosity, which makes them suitable for applications such as flexible electronic displays.

But perhaps the most exciting property of hyperbranched polymers is the sheer range of compounds that can be made by manipulating the terminal side chains of the molecule to change its chemical character. This is now being exploited in a new generation of vaccines and other compounds designed to give people long term protection against infectious disease. At the ESF workshop delegates heard from Dr. Ulrik Boas from the University of Copenhagen how hyperbranched polymers can provide scaffolding for constructing new adjuvants, which are substances that upon injection activate a person's immune system against a particular pathogen. Boas reported that hyperbranched polymers can be used to interact with PAMPs (Pathogen Associated Molecular Patterns), which are motifs on the surface of microbes that can be used by the immune system to identify and then destroy them.

The workshop also revealed industrial applications building on existing work, with Dr. Christopher Plummer from the Ecole Polytechnique Federale de Lausanne in Switzerland explaining that hyperbranched polymers were capable of being tuned to highly specific levels of key attributes such as solubility, miscibility (ability to mix), as well as viscosity. The key point is that the chemical and physical properties of a molecule are determined by the surface characteristics rather than the internal structure, and hyperbranched polymers have large numbers of terminal branch points on the surface capable of being changed. As Plummer pointed out, this brings scope for improving on existing materials, for example designing ultra strong epoxy-resins that can undergo secondary toughening by addition of a hyperbranched polymer compound, whose low viscosity makes the mixing easier.

But the greatest public interest in hyperbranched polymers is being generated by the medical potential, and another exciting application on this front could lie in their use to combat currently incurable diseases involving formation of plaques comprising wrongly folded proteins, such as Alzheimer's and prion diseases like CJD (Creutzfeldt-Jacob) disease. Highly branched molecules called dendrimers have already been shown capable of interacting with the proteins that combine together in plaques to cause these diseases, with evidence that this process can be inhibited, according to Barbara Klajnert from the University of Lodz in Poland in the workshop's first presentation.

Many other topics were discussed, and the workshop set the stage for future collaboration among Europe's leading research groups in this highly promising field. The ESF Exploratory Workshop, Hyperbranched polymers as novel materials for nanoscale applications:insight from experiment, theory and simulations (HYPER-NANO) was held in Fodele in Greece during May 2008.

http://www.esf.org/index.php?eID=tx_nawsecuredl&u=0&file=fileadmin/be_user/ew_docs/07-033_Report.pdf&t=1224926462&hash=9c40534915457e085a40d1880ef74a12

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Materials Sciences:

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

nachricht Spray-on electric rainbows: Making safer electrochromic inks
17.08.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>