Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular self-assembly controls graphene-edge configuration

10.09.2014

A research team headed by Prof. Patrick Han and Prof. Taro Hitosugi at the Advanced Institute of Materials Research (AIMR), Tohoku University discovered a new bottom-up fabrication method that produces defect-free graphene nanoribbons (GNRs) with periodic zigzag-edge regions. This method, which controls GNR growth direction and length distribution, is a stepping stone towards future graphene-device fabrication by self-assembly.

Graphene, with its low dimensionality, high stability, high strength, and high charge-carrier mobility, promises to be a revolutionary material for making next-generation high-speed transistors. Moreover, graphene's properties are predicted to be directly controllable by its structure.


Graphene nanoribbons are fabricated by molecular assembly on a Cu(111) substrate. On this surface system, GNRs on grow in six azimuthal directions exclusively. White lines in the inset highlight the zigzag edges of a ribbon.

Credit: Patrick Han

For example, recent works have demonstrated that the bandgap of armchair GNRs is controlled by the ribbon width. However, the property-tailoring capabilities of other edge conformations (e.g., the zigzag edge is predicted by theory to have magnetic properties) have not been tested, because their defect-free fabrication remains a major challenge.

"Previous strategies in bottom-up molecular assemblies used inert substrates, such as gold or silver, to give molecules a lot of freedom to diffuse and react on the surface," says Han. "But this also means that the way these molecules assemble is completely determined by the intermolecular forces and by the molecular chemistry." Currently, there is no molecule that can assemble to produce zigzag-edge GNRs.

To target the zigzag edge, the AIMR team used a copper surface—a substrate more reactive than gold or silver—to introduce new substrate-to-molecule interactions, in addition to the intermolecular interactions. The effects of this strategy were demonstrated using a precursor molecule known to form armchair-edge GNRs.

On copper, scanning tunneling microscope images revealed a molecular assembly that is entirely different than that on gold or silver, yielding GNRs with periodic zigzag-edge regions. Future directions include the assessment of other reactive surfaces for bottom-up GNR fabrication, and the determination of the property-tailoring effects of the GNR edges shown in this work.

Moreover, the surface reactivity of the copper substrate also has a profound effect on both the GNR length distribution and surface growth direction. Unlike previous assemblies, the current method produces shorter ribbons, only in six surface azimuthal directions. These features could be exploited for making single graphene interconnections between prefabricated structures by self-assembly.

"Diffusion-controlled assemblies, as seen on gold and silver, produce bundles of long GNRs. These methods are good for making interconnect arrays, but not single connections", Han says. "Our method opens the possibility for self-assembling single graphene devices at desired locations, because of the length and of the direction control."

###

Publication Information

Patrick Han, Kazuto Akagi, Filippo Federici Canova, Hirotaka Mutoh, Susumu Shiraki, Katsuya Iwaya, Paul S. Weiss, Naoki Asao, Taro Hitosugi, "Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity", ACS Nano, 2014, in press DOI: 10.1021/nn5028642

Contact Information

(About Research)
Prof. Patrick Han
Advanced Institute for Materials Research, Tohoku University
E-MAIL: pxh@wpi-aimr.tohoku.ac.jp
TEL: +81-22-217-6170

(about Public Relations)
Yasufumi NAKAMICHI
Public Relations & Outreach office, Advanced Institute for Materials Research, Tohoku University
E-MAIL: outreach@wpi-aimr.tohoku.ac.jp
TEL: +81 22 217 6146

About AIMR

The Advanced Institute for Materials Research (AIMR) at Tohoku University is one of nine World Premier International Research Center Initiative (WPI) Program established with the support of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), aimed at developing world-class research bases in Japan. After its establishment in 2007, AIMR has been active in conducting research activities and creating new systems in order to become a global center for materials science. Since 2012, AIMR has also been conducting fundamental research by finding connections between materials science and mathematics.

Learn more at http://www.wpi-aimr.tohoku.ac.jp

Yasufumi Nakamichi | Eurek Alert!

Further reports about: GNR GNRs Molecular controls copper graphene materials properties self-assembly

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>