Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mixing solids and liquids enhances optical properties of both

10.06.2016

New approach can dramatically change the extent to which optical devices scatter light

By immersing glass particles in a fluid, researchers at MIT's Media Lab and Harvard University are exploring a new mechanism for modifying an optical device's diffusivity, or the extent to which it scatters light.


A mild temperature change radically alters the degree to which a solid-fluid mixture bends light.

Courtesy of the researchers

In its current form, the new diffuser could be used to calibrate a wide range of imaging systems, but the researchers believe that their mechanism could ultimately lead to holographic video screens or to tunable optical devices with applications in imaging, sensing, and photography.

In experiments, the solid-liquid mixture demonstrated much more dramatic changes in diffusivity than existing theory would have predicted, so the researchers also developed a new computer model to describe it. That model could help them devise more complex applications for the basic technology.

The researchers describe their new work in the latest issue of the American Chemical Society's ACS Photonics journal.

The fluid and the glass in the prototype were chosen because they have very similar refractive indices, meaning light travels through them at similar speeds. When light moves from a material with a high refractive index to one with a lower refractive index, it changes direction; this is the phenomenon behind the familiar illusion of a straw's appearing to bend when it's inserted into a glass of water.

The researchers' prototype exploits the fact that changes in temperature alter materials' refractive indices.

"It's hard to find a solid and liquid that have exactly the same refractive index at room temperature," says Barmak Heshmat, a postdoc in the Media Lab's Camera Culture group and corresponding author on the paper. "But if the speed at which the refractive index changes for solid and liquid is different -- which is the case for most solids and liquids -- then at a certain temperature they will exactly match, to the last digit. That's why you see this giant jump in transparency."

Heshmat is joined on the paper by Ramesh Raskar, the NEC Career Development Associate Professor of Media Arts and Sciences and head of the Camera Culture group, and Benedikt Groever, a graduate student in engineering and applied science at Harvard.

Study in contrast

In their experiments, the researchers found that a temperature change of 10 degrees would increase the diffusivity of their device tenfold, and a change of 42 degrees changed it a thousandfold.

Heshmat believes that a temperature-modulated version of his team's filter could be used to calibrate sensors used in the study of material flows, the study of cells, and medical imaging.

For instance, medical-imaging systems are typically calibrated using devices called "tissue phantoms," which duplicate the optical properties of different types of biological tissues. Tissue phantoms can be expensive, and many of them may be required to calibrate a single imaging device. Heshmat believes that a low-cost version of his team's filter could mimic a wide range of tissues.

But the fundamental principle illustrated by the researchers' prototype could have broader ramifications. The effect of heat on the refractive index of either the solid or the fluid, taken in isolation, is very subtle. But when the two are mixed together, the effect on diffusivity is dramatic.

The same would be true, Heshmat argues, of other types experimental materials whose refractive indices change in response to either light or an electric field. And optical or electrical activation would broaden the range of applications for tunable optical devices.

"If you have photorefractive changes in a solid material in a solid phase, the amount of change you can get between the solid and itself is very small," he explains. "You need a very strong field to see that change in your refractive index. But if you have two types of media, the refractive index of the solid is going to change much faster compared to the liquid. So you get this deep contrast that can help a lot."

Application

In holographic displays, cells filled with a mixture of electrically responsive solid materials and a fluid could change their diffusivity when charged by an electrode, in much the way that cells filled with ionized gas change their color in plasma TVs. Adjacent cells could thus steer light in slightly different directions, mimicking the reflection of light off of a contoured surface and producing the illusion of three-dimensionality.

Liquid-solid mixtures could also be used to produce tunable diffraction gratings, which are used in some sensing applications to filter out light or other electromagnetic radiation of particular frequencies, or in tunable light diffusers of the sort photographers use to make the strongly directional light of a flash feel more like ambient light.

The computer model that the researchers describe in their paper predicts the diffusivity of a liquid-solid mixture on the basis of the physical characteristics of the solid particles -- how jagged or spiky they are -- and on their concentration in the liquid. That model, Heshmat says, could be used to develop solid particles tailored to specific applications.

###

Additional background

ARCHIVE: Imaging with an "optical brush"

ARCHIVE: Glasses-free 3-D projector

ARCHIVE: Cheap, color, holographic video

ARCHIVE: Glasses-free 3-D TV looks nearer

Abby Abazorius | EurekAlert!

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>