Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT commissions Peratech to develop next generation tactile robotic skin

22.02.2010
Peratech Limited, the leader in new materials designed for touch technology solutions, has announced that they have been commissioned by the MIT Media Lab to develop a new type of electronic 'skin' that enables robotic devices to detect not only that they have been touched but also where and how hard the touch was.

The key to the sensing technology is Peratech's patented 'QTC' materials. QTC's, or Quantum Tunnelling Composites, are a unique new material type which provides a measured response to force and/or touch by changing its electrical resistance - much as a dimmer light switch controls a light bulb.

This enables a simple electronic circuit within the robot to determine touch. Being easily formed into unique shapes - including being 'draped' over an object much like a garment might, QTC's provide a metaphor for how human skin works to detect touch.

Uniquely, QTC's provide a 'proportional' response - in other words detecting 'how hard' they have been touched. Further, using Peratech's patented xy scanning technology, the robot is able to detect where on a matrix of sensors applied to areas such as the forearms, shoulders and torso, it has been touched.

As robotic devices continue to make inroads to our daily life, their ability to understand the presence and interaction with humans and other objects within a space becomes critically important. This research project is hoped to produce results which could soon be applied to a range of robotics projects that MIT works upon.

Peratech's QTC technology has an established track record for use in robotics, having previously been adopted by NASA for their Robonaut device and by Shadow Robot in the UK, producers of what is widely regarded as the World's most advanced robotic hand, which have utilised QTC to sense 'touch'. However, this project with MIT is a World first in enabling a human to interact - through touch across the body of a robot - much as they would with another human.

About QTC
QTC's are electro-active polymeric materials made from metallic or non-metallic filler particles combined in an elastomeric binder. These enable the action of 'touch' to be translated into an electrical reaction, enabling a vast array of devices to incorporate very thin and highly robust 'sensing' of touch and pressure. QTC’s unique properties enable it to be made into force sensitive switches of any shape or size. QTC switches and switch matrices can be screen printed allowing for development and integration of switches that are as thin as 75 microns.

QTC is also low power and interfaces can be designed with no start resistance so that without pressure, the switch draws no power and passes no current. Importantly, when pressure is applied, the resistance drops in proportion to the amount of pressure which allows sophisticated human machine interface designs that react to variations in pressure. QTC technology has no moving parts and requires no air gap between contacts. This makes it extremely reliable and suitable for integration into the thinnest electronic designs and with industry leading operational life.

About MIT
Massachusetts Institute of Technology is based in Cambridge, Massachusetts, USA. www.web.mit.edu
About Peratech
Peratech is the inventor and world leader in Quantum Tunnelling Composite (QTC) technology. Already widely used in robotics and defence, Peratech commercialised its QTC technology at the beginning of 2006 and is currently working with a number of key technology clients who are implementing QTC sensing technology within their own products.

QTC materials give enormous flexibility in the design, shape, thickness and style of a switch or pressure sensor and can be made in a range of elastomeric forms, including emulsive coatings (down to thicknesses of 10 microns), ‘bulk’ silicone or rubber and textile forms. Peratech pioneered the creation of electronic switches made from textiles as early as 2001. QTC has been recognised through numerous International awards and accolades including “Tomorrow’s World Industry Award 2002”, “Saatchi & Saatchi Innovation Award 2000” and “European Electronics Industry Award 2004”.

QTC materials have been used by organisations such as NASA, ILC Dover, Shadow Robotics and numerous government agencies World Wide. Peratech also owns SOFTswitch the pioneering creator of textile switching and Eleksen, the world leader in touch sensitive interactive textiles for electronics interface design. Further information is available from www.peratech.com

For further information, please contact
Peratech Limited, Old Repeater Station, Brompton-on-Swale, North Yorkshire, DL10 7JH United Kingdom. Tel: +44 (0) 8700 727272 Fax: +44 (0) 8700 727273 Email: info@peratech.com www.peratech.com
For interviews, further information or illustrations, please contact
Nigel Robson, Vortex PR
Island House, Forest Road, Forest, Guernsey, GY8 0AB, United Kingdom
Int. Tel: +44 1481 233080 UK Tel: 01481 233080 www.vortexpr.com
All trademarks are the property of their respective owners.

Nigel Robson | Vortex PR
Further information:
http://www.web.mit.edu

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>