Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Minuscule bumps improve an anti-reflective coating

An anti-reflective film that mimics a moth’s eye is durable and highly effective, overcoming some of the main barriers to commercialization

M. S. M. Saifullah and Hemant Raut of A*STAR’s Institute of Materials Research and Engineering in Singapore and their co-workers have developed a coating that matches the optical properties of the best conventional anti-reflective coatings (ARCs), while being more robust and easier to produce1.

Minuscule bumps that mimic the surface of a moth’s eye maximize the amount of light transmitted through a glass sheet.
© iStock/Thinkstock

ARCs are used in a variety of applications to reduce glare and increase the proportion of light transmitted through the glass or plastic beneath — potentially boosting the output of a solar module, for example.

Roughly 8% of light is reflected as it travels from air into glass, due to the difference in the refractive index between the materials. ARCs have refractive indices that gradually change from lower to higher values, offering a smooth transition for light that minimizes reflection. The moth’s eye achieves this with a layer of tiny bumps of 250 nanometers in height, but previous polymer films that mimic this pattern lacked sufficient durability for outdoor applications.

The coating developed by Saifullah, Raut and their team is based on polyhedral oligomeric silsesquioxane (POSS) — a molecular cage built from silicon and oxygen atoms. The team combined a modified form of POSS with three different molecules that can form strong links between them, and then spun the mixture onto glass to ensure an even distribution.

Using a process called nanoimprint lithography, the scientists pressed a non-stick nickel mold onto the mixture and heated it to 130 ºC, triggering a chemical reaction that cross-linked the reagents to form a polymer film. They repeated the process to create a second film on the other side of the glass.

After testing different proportions of the ingredients, the researchers produced coated glass that transmitted 98.2% of the light shone on it, matching the highest values reported for such structures. The film improved the transmittance of light falling at a wide range of angles by gradually bending incoming light rays toward the glass.

The coating showed no degradation after 100 hours in water at 85 ºC and could withstand sulfuric acid as well as a fog of salty water. It was also more scratch-resistant than conventional polymer-based ARCs. “These properties are highly desirable in a robust ARC that is targeted for outdoor commercial applications,” says Saifullah.

“The biggest challenge is the scalability of the POSS-based ARCs for use on large-area glass substrates,” he adds. “Roll-to-roll nanoimprint lithography is the way to do it. However, factors such as throughput have to be considered before commercialization can be realized.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Associated links
Journal information
Raut, H. K., Dinachali, S. S., He, A. Y., Ganesh, V. A., Saifullah, M. S. M. et al. Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties. Energy & Environmental Science 6, 1929–1937 (2013)

A*STAR Research | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>