Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minuscule bumps improve an anti-reflective coating

24.10.2013
An anti-reflective film that mimics a moth’s eye is durable and highly effective, overcoming some of the main barriers to commercialization

M. S. M. Saifullah and Hemant Raut of A*STAR’s Institute of Materials Research and Engineering in Singapore and their co-workers have developed a coating that matches the optical properties of the best conventional anti-reflective coatings (ARCs), while being more robust and easier to produce1.


Minuscule bumps that mimic the surface of a moth’s eye maximize the amount of light transmitted through a glass sheet.
© iStock/Thinkstock

ARCs are used in a variety of applications to reduce glare and increase the proportion of light transmitted through the glass or plastic beneath — potentially boosting the output of a solar module, for example.

Roughly 8% of light is reflected as it travels from air into glass, due to the difference in the refractive index between the materials. ARCs have refractive indices that gradually change from lower to higher values, offering a smooth transition for light that minimizes reflection. The moth’s eye achieves this with a layer of tiny bumps of 250 nanometers in height, but previous polymer films that mimic this pattern lacked sufficient durability for outdoor applications.

The coating developed by Saifullah, Raut and their team is based on polyhedral oligomeric silsesquioxane (POSS) — a molecular cage built from silicon and oxygen atoms. The team combined a modified form of POSS with three different molecules that can form strong links between them, and then spun the mixture onto glass to ensure an even distribution.

Using a process called nanoimprint lithography, the scientists pressed a non-stick nickel mold onto the mixture and heated it to 130 ºC, triggering a chemical reaction that cross-linked the reagents to form a polymer film. They repeated the process to create a second film on the other side of the glass.

After testing different proportions of the ingredients, the researchers produced coated glass that transmitted 98.2% of the light shone on it, matching the highest values reported for such structures. The film improved the transmittance of light falling at a wide range of angles by gradually bending incoming light rays toward the glass.

The coating showed no degradation after 100 hours in water at 85 ºC and could withstand sulfuric acid as well as a fog of salty water. It was also more scratch-resistant than conventional polymer-based ARCs. “These properties are highly desirable in a robust ARC that is targeted for outdoor commercial applications,” says Saifullah.

“The biggest challenge is the scalability of the POSS-based ARCs for use on large-area glass substrates,” he adds. “Roll-to-roll nanoimprint lithography is the way to do it. However, factors such as throughput have to be considered before commercialization can be realized.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Associated links
http://www.research.a-star.edu.sg/research/6785
Journal information
Raut, H. K., Dinachali, S. S., He, A. Y., Ganesh, V. A., Saifullah, M. S. M. et al. Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties. Energy & Environmental Science 6, 1929–1937 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>