Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minuscule bumps improve an anti-reflective coating

24.10.2013
An anti-reflective film that mimics a moth’s eye is durable and highly effective, overcoming some of the main barriers to commercialization

M. S. M. Saifullah and Hemant Raut of A*STAR’s Institute of Materials Research and Engineering in Singapore and their co-workers have developed a coating that matches the optical properties of the best conventional anti-reflective coatings (ARCs), while being more robust and easier to produce1.


Minuscule bumps that mimic the surface of a moth’s eye maximize the amount of light transmitted through a glass sheet.
© iStock/Thinkstock

ARCs are used in a variety of applications to reduce glare and increase the proportion of light transmitted through the glass or plastic beneath — potentially boosting the output of a solar module, for example.

Roughly 8% of light is reflected as it travels from air into glass, due to the difference in the refractive index between the materials. ARCs have refractive indices that gradually change from lower to higher values, offering a smooth transition for light that minimizes reflection. The moth’s eye achieves this with a layer of tiny bumps of 250 nanometers in height, but previous polymer films that mimic this pattern lacked sufficient durability for outdoor applications.

The coating developed by Saifullah, Raut and their team is based on polyhedral oligomeric silsesquioxane (POSS) — a molecular cage built from silicon and oxygen atoms. The team combined a modified form of POSS with three different molecules that can form strong links between them, and then spun the mixture onto glass to ensure an even distribution.

Using a process called nanoimprint lithography, the scientists pressed a non-stick nickel mold onto the mixture and heated it to 130 ºC, triggering a chemical reaction that cross-linked the reagents to form a polymer film. They repeated the process to create a second film on the other side of the glass.

After testing different proportions of the ingredients, the researchers produced coated glass that transmitted 98.2% of the light shone on it, matching the highest values reported for such structures. The film improved the transmittance of light falling at a wide range of angles by gradually bending incoming light rays toward the glass.

The coating showed no degradation after 100 hours in water at 85 ºC and could withstand sulfuric acid as well as a fog of salty water. It was also more scratch-resistant than conventional polymer-based ARCs. “These properties are highly desirable in a robust ARC that is targeted for outdoor commercial applications,” says Saifullah.

“The biggest challenge is the scalability of the POSS-based ARCs for use on large-area glass substrates,” he adds. “Roll-to-roll nanoimprint lithography is the way to do it. However, factors such as throughput have to be considered before commercialization can be realized.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Associated links
http://www.research.a-star.edu.sg/research/6785
Journal information
Raut, H. K., Dinachali, S. S., He, A. Y., Ganesh, V. A., Saifullah, M. S. M. et al. Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties. Energy & Environmental Science 6, 1929–1937 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>