Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mimicking Nature, Water-Based ‘Artificial Leaf’ Produces Electricity

27.09.2010
A team led by a North Carolina State University researcher has shown that water-gel-based solar devices – “artificial leaves” – can act like solar cells to produce electricity. The findings prove the concept for making solar cells that more closely mimic nature. They also have the potential to be less expensive and more environmentally friendly than the current standard-bearer: silicon-based solar cells.

The bendable devices are composed of water-based gel infused with light-sensitive molecules – the researchers used plant chlorophyll in one of the experiments – coupled with electrodes coated by carbon materials, such as carbon nanotubes or graphite.

The light-sensitive molecules get “excited” by the sun’s rays to produce electricity, similar to plant molecules that get excited to synthesize sugars in order to grow, says NC State’s Dr. Orlin Velev, Invista Professor of Chemical and Biomolecular Engineering and the lead author of a paper published online in the Journal of Materials Chemistry describing this new generation of solar cells.

Velev says that the research team hopes to “learn how to mimic the materials by which nature harnesses solar energy.” Although synthetic light-sensitive molecules can be used, Velev says naturally derived products – like chlorophyll – are also easily integrated in these devices because of their water-gel matrix.

Now that they’ve proven the concept, Velev says the researchers will work to fine-tune the water-based photovoltaic devices, making them even more like real leaves.

“The next step is to mimic the self-regenerating mechanisms found in plants,” Velev says. “The other challenge is to change the water-based gel and light-sensitive molecules to improve the efficiency of the solar cells.”

Velev even imagines a future where roofs could be covered with soft sheets of similar electricity-generating artificial-leaf solar cells.

“We do not want to overpromise at this stage, as the devices are still of relatively low efficiency and there is a long way to go before this can become a practical technology,” Velev says. “However, we believe that the concept of biologically inspired ‘soft’ devices for generating electricity may in the future provide an alternative for the present-day solid-state technologies.”

Researchers from the Air Force Research Laboratory and Chung-Ang University in Korea co-authored the study. The study was funded by the Air Force Research Laboratory and the U.S. Department of Energy. The work is part of NC State’s universitywide nanotechnology program, Nano@NC State.

NC State’s Department of Chemical and Biomolecular Engineering is part of the university’s College of Engineering.

- kulikowski -

Note to editors: The abstract of the paper follows. Velev is currently in Europe on academic leave; please consider the time difference when attempting to contact him.

“Aqueous soft matter based photovoltaic devices”

Authors: Hyung-Jun Koo and Dr. Orlin D. Velev, NC State University; Suk Tai Chang, Chung-Ang University, Seoul, Korea; Joseph M. Slocik and Rajesh R. Naik, Air Force Research Laboratory

Published: Online Sept. 21, 2010, in Journal of Materials Chemistry

Abstract: We present a new type of photovoltaic system based on aqueous soft gel materials. Two photosensitive ions, DAS and [Ru(bpy)3]2+, were used as photoactive molecules embedded in aqueous gel. The hydrogel photovoltaic devices (HGPVs) showed performance comparable with or higher than those of other biomimetic or ionic photovoltaic systems reported recently. We suggest a provisional mechanism, which is based on a synergetic effect of the two dye molecules in photocurrent generation. We found an efficient replacement of the expensive Pt counter-electrode with copper coated with carbon materials, such as carbon nanotubes, carbon black or graphite. These Cu electrodes coated with carbon layers could drastically reduce the cost of such hydrogel devices without efficiency loss. Thus, a new class of low cost and flexible photovoltaic cells made of biocompatible matrix was demonstrated. Biologically derived photoactive molecules, such as Chlorophyll and Photosystem II, were successfully operated in aqueous gel media of such HGPVs.

Mick Kulikowski | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>