Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaves Join Fight against Malaria

09.08.2011
With the support of a Phase II grant from the Bill and Melinda Gates Foundation, Penn State materials scientists and medical researchers are working to develop a process to destroy malaria parasites in the blood using low-power microwaves.

Dinesh Agrawal, professor of materials, and Jiping Cheng, senior research associate in the Penn State Materials Research Institute, are working with Penn State College of Medicine researchers and researchers at INDICASAT-AIP, Panama, and at Clarkson University, N.Y., to test the microwave treatment in vitro and in mice models.

Malaria continues to kill nearly a million people worldwide each year, the large majority of them children under five. Recent reports from Cambodia suggest that currently effective antimalarial drugs are beginning to lose their effectiveness as the most virulent malaria strain develops resistance. The Gates Foundation funds efforts to eradicate the disease through traditional methods, such as providing mosquito netting and insecticides, and through innovative ideas, such as those being tried out at Penn State through a Gates Foundation Grand Challenges Explorations grant.

“The first phase successfully demonstrated that the way microwaves heat the malaria parasite causes it to die without harming normal blood cells,” says Agrawal, who is director of the Microwave Processing and Engineering Center and an authority on microwave engineering. “Microwave interactions are unique. The parasite has extra iron ( Fe3+) that enhances the microwave energy absorption by the parasite. As a result, it is postulated that the parasite gets heated preferentially and is killed without affecting the normal blood cells.”

The team, which is led by associate professor Jose A. Stoute in the Penn State College of Medicine, applied for the Gates funding two years ago and received second phase funding of up to $1 million in July 2011. The first phase tested the microwave process in a laboratory culture. The second phase will use a larger system and test the process in mouse models. If those tests are successful, Agrawal says, the next step will be to design and build a system to treat human beings. Part of that work will be done at Penn State and part at Clarkson University. “That could be revolutionary,” Agrawal says. “A human size device might look like the scanners at the airport.”

The Grand Challenges Explorations is an initiative of the Bill and Melinda Gates Foundation that allows for research that is typically too bold to attract funding from other sources. Other researchers involved in the grant include Dr. Carmenza Spadafora from the Instituto de Investigaciones Científicas y Servicios de Alta Tecnología in the Republic of Panama and Prof. William Jemison and Dr. Christopher Nadovich from the College of Engineering at Clarkson University.

The Materials Research Institute coordinates Penn State’s interdisciplinary materials-related research activities, encompassing more than 200 faculty groups. Penn State’s signature scientific research building, the Millennium Science Complex, is scheduled to open in Fall 2011. Housing both the Materials Research Institute and the Huck Institutes for the Life Sciences, this building is designed to integrate the physical and life sciences and engineering. Learn more about materials research and the Millennium Science Complex at www.mri.psu.edu.

Dinesh Agrawal | Newswise Science News
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>