Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaves Join Fight against Malaria

09.08.2011
With the support of a Phase II grant from the Bill and Melinda Gates Foundation, Penn State materials scientists and medical researchers are working to develop a process to destroy malaria parasites in the blood using low-power microwaves.

Dinesh Agrawal, professor of materials, and Jiping Cheng, senior research associate in the Penn State Materials Research Institute, are working with Penn State College of Medicine researchers and researchers at INDICASAT-AIP, Panama, and at Clarkson University, N.Y., to test the microwave treatment in vitro and in mice models.

Malaria continues to kill nearly a million people worldwide each year, the large majority of them children under five. Recent reports from Cambodia suggest that currently effective antimalarial drugs are beginning to lose their effectiveness as the most virulent malaria strain develops resistance. The Gates Foundation funds efforts to eradicate the disease through traditional methods, such as providing mosquito netting and insecticides, and through innovative ideas, such as those being tried out at Penn State through a Gates Foundation Grand Challenges Explorations grant.

“The first phase successfully demonstrated that the way microwaves heat the malaria parasite causes it to die without harming normal blood cells,” says Agrawal, who is director of the Microwave Processing and Engineering Center and an authority on microwave engineering. “Microwave interactions are unique. The parasite has extra iron ( Fe3+) that enhances the microwave energy absorption by the parasite. As a result, it is postulated that the parasite gets heated preferentially and is killed without affecting the normal blood cells.”

The team, which is led by associate professor Jose A. Stoute in the Penn State College of Medicine, applied for the Gates funding two years ago and received second phase funding of up to $1 million in July 2011. The first phase tested the microwave process in a laboratory culture. The second phase will use a larger system and test the process in mouse models. If those tests are successful, Agrawal says, the next step will be to design and build a system to treat human beings. Part of that work will be done at Penn State and part at Clarkson University. “That could be revolutionary,” Agrawal says. “A human size device might look like the scanners at the airport.”

The Grand Challenges Explorations is an initiative of the Bill and Melinda Gates Foundation that allows for research that is typically too bold to attract funding from other sources. Other researchers involved in the grant include Dr. Carmenza Spadafora from the Instituto de Investigaciones Científicas y Servicios de Alta Tecnología in the Republic of Panama and Prof. William Jemison and Dr. Christopher Nadovich from the College of Engineering at Clarkson University.

The Materials Research Institute coordinates Penn State’s interdisciplinary materials-related research activities, encompassing more than 200 faculty groups. Penn State’s signature scientific research building, the Millennium Science Complex, is scheduled to open in Fall 2011. Housing both the Materials Research Institute and the Huck Institutes for the Life Sciences, this building is designed to integrate the physical and life sciences and engineering. Learn more about materials research and the Millennium Science Complex at www.mri.psu.edu.

Dinesh Agrawal | Newswise Science News
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>