Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microfluidics: Sizing up cells

17.11.2011
A numerical model could improve the performance of cell-sorting devices by predicting the paths taken by deformable cells

The ability to separate cells according to size and shape is useful in biological studies. One popular method of cell sorting involves the use of microfluidic devices consisting of a series of aligned micropillars. Such ‘bump arrays’ operate on the basis of allowing cells that are small enough to pass through narrow gaps, while cells that are too large undergo lateral displacement by bumping into the pillars. Blood samples, for example, can be separated into platelets, white cells and red cells using this technique. However, some particles that have deformable as opposed to rigid structures are prone to becoming ‘mis-sorted’, as they can bypass normal routes through the devices (see image).


Deformable cells can squeeze between narrow gaps in a bump array of micropillars, leading to unpredictable paths in cell sorting devices
Copyright : A*STAR

Keng Hwee Chiam and co-workers at the A*STAR Institute of High Performance Computing have now completed a numerical study modeling ‘dispersive’ routes made in microfluidic devices by deformable particles1. “We wanted to arrive at an understanding of how cell deformability affects the device geometry and functioning, and hence help other researchers to optimize their devices in the future,” says Chiam.

The researchers created a two-dimensional computer model to examine the different possible routes taken by cells through the device pillars. In experimental observations, rigid cells either follow a zigzag pattern through the pillars, or they bump into the pillars and drop to the bottom of the array, depending on their size. The new computer model can accurately predict these paths.

In addition, the model can predict paths taken by large cells or particles that can change shape and squeeze through the pillars. These were found to follow a far more random path, sometimes moving in zigzag directions, sometimes bumping into the pillars, and sometimes getting stuck completely. These so-called ‘dispersive trajectories’ are dependent on the orientation, arrangement and size of the pillars present in the device. Chiam explains, “This shows us what design parameters to avoid, and we imagine that numerical simulations, such as the ones used by the aerospace industry in aircraft design, could benefit future biological technologies.”

The simulations could be improved by extending the computer model to a full three-dimensional representation of the cells and micropillars, but amassing the computational data required is currently cost-prohibitive. Chiam hopes, however, that future collaborations will lead to a three-dimensional version of the model and adds that the research team aims “to simulate the sorting of DNA strands instead of cells, to see if they can be sorted according to their length and sequence.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

References

Quek, R., Le, D. V. & Chiam, K.-H. Separation of deformable particles in deterministic lateral displacement devices. Physical Review E 83, 056301 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>