Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microfluidics: Sizing up cells

17.11.2011
A numerical model could improve the performance of cell-sorting devices by predicting the paths taken by deformable cells

The ability to separate cells according to size and shape is useful in biological studies. One popular method of cell sorting involves the use of microfluidic devices consisting of a series of aligned micropillars. Such ‘bump arrays’ operate on the basis of allowing cells that are small enough to pass through narrow gaps, while cells that are too large undergo lateral displacement by bumping into the pillars. Blood samples, for example, can be separated into platelets, white cells and red cells using this technique. However, some particles that have deformable as opposed to rigid structures are prone to becoming ‘mis-sorted’, as they can bypass normal routes through the devices (see image).


Deformable cells can squeeze between narrow gaps in a bump array of micropillars, leading to unpredictable paths in cell sorting devices
Copyright : A*STAR

Keng Hwee Chiam and co-workers at the A*STAR Institute of High Performance Computing have now completed a numerical study modeling ‘dispersive’ routes made in microfluidic devices by deformable particles1. “We wanted to arrive at an understanding of how cell deformability affects the device geometry and functioning, and hence help other researchers to optimize their devices in the future,” says Chiam.

The researchers created a two-dimensional computer model to examine the different possible routes taken by cells through the device pillars. In experimental observations, rigid cells either follow a zigzag pattern through the pillars, or they bump into the pillars and drop to the bottom of the array, depending on their size. The new computer model can accurately predict these paths.

In addition, the model can predict paths taken by large cells or particles that can change shape and squeeze through the pillars. These were found to follow a far more random path, sometimes moving in zigzag directions, sometimes bumping into the pillars, and sometimes getting stuck completely. These so-called ‘dispersive trajectories’ are dependent on the orientation, arrangement and size of the pillars present in the device. Chiam explains, “This shows us what design parameters to avoid, and we imagine that numerical simulations, such as the ones used by the aerospace industry in aircraft design, could benefit future biological technologies.”

The simulations could be improved by extending the computer model to a full three-dimensional representation of the cells and micropillars, but amassing the computational data required is currently cost-prohibitive. Chiam hopes, however, that future collaborations will lead to a three-dimensional version of the model and adds that the research team aims “to simulate the sorting of DNA strands instead of cells, to see if they can be sorted according to their length and sequence.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

References

Quek, R., Le, D. V. & Chiam, K.-H. Separation of deformable particles in deterministic lateral displacement devices. Physical Review E 83, 056301 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>