Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microelectronics: A tougher seal for rugged environments

28.02.2013
Sensors used in harsh conditions, such as deep-sea oil wells, must withstand extreme temperatures and pressures for hundreds of hours without failing. Researchers in Singapore have investigated two metal alloys that could give micro-electromechanical system (MEMS) sensors better protection in the toughest environments
Sensors used in harsh conditions, such as deep-sea oil wells, must withstand extreme temperatures and pressures for hundreds of hours without failing. Vivek Chidambaram and co-workers at the A*STAR Institute of Microelectronics, Singapore, have investigated two metal alloys that could give micro-electromechanical system (MEMS) sensors better protection in the toughest environments

Typical MEMS sensors measure temperature, pressure or vibration, and they are hermetically sealed inside a strong metal casing to prevent air or moisture degrading the sensors’ electronics. Chidambaram’s team wanted to find cheaper, more durable alternatives to the metal solders, such as gold–tin or copper–tin, which are typically used to seal the case. They tested a 70:30 aluminum–germanium mixture, which has a melting point of about 420 °C. This temperature — the eutectic point — is much lower than that for either metal on its own.

Unlike most conventional packaging materials, aluminum and germanium are compatible with the processes used to manufacture the MEMS. Using the aluminum–germanium sealant should make MEMS manufacturing easier and cheaper, and could also improve the device’s performance, says Chidambaram.

The researchers built a stack of 4 alternating wafers of aluminum and germanium, each less than a micrometer thick, and heated the sandwich under pressure to about 400 °C for 2 hours. Although the wafers did not liquefy, this “thermal aging process facilitated bonding prior to melting,” explains Chidambaram. Raising the temperature to 475 °C for another 2 hours fully melted the mixture, which then formed a strong seal after cooling — a process known as transient liquid-phase bonding.

Next, the researchers used acoustic microscopy, scanning electron microscopy and X-ray spectroscopy to reveal any voids or other defects in the seals. They found that the thermal aging process improved the quality of the seal. Tests showed that it was strong enough to withstand a shear of 46 megapascals — similar to the pressure exerted by almost half a ton per square centimeter — and was impermeable to water. The material lost little of its strength after being exposed to 300 °C for hundreds of hours.

Chidambaram and his team also tested a platinum–indium seal — which has the highest re-melting point (894 °C) of all the solders being considered for these applications — but it lost its strength after long durations at 300 °C, leaving the aluminum–germanium mixture in pole position as a better seal for MEMS. “Cost effectiveness, better thermo-mechanical properties, and its eutectic microstructure makes it an attractive alternative,” says Chidambaram.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Chidambaram, V., Yeung, H. B. & Shan, G. Development of metallic hermetic sealing for MEMS packaging for harsh environment applications. Journal of Electronic Materials 41, 2256–2266, 2012

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Researchers devise microreactor to study formation of methane hydrate
23.08.2017 | NYU Tandon School of Engineering

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

New Test for Rare Immunodeficiency

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>