Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Micro Honeycomb Materials Reduce Aircraft Noise

01.10.2008
Researchers at the Georgia Tech Research Institute (GTRI) are developing innovative honeycomb structures that could make possible a new approach to noise reduction in aircraft.

Noise from commercial and military jet aircraft causes environmental problems for communities near airports, obliging airplanes to follow often complex noise-abatement procedures on takeoff and landing. It can also make aircraft interiors excessively loud.

To address this situation, engineers at the Georgia Tech Research Institute (GTRI) are turning to innovative materials that make possible a new approach to the physics of noise reduction. They have found that honeycomb-like structures composed of many tiny tubes or channels can reduce sound more effectively than conventional methods.

“This approach dissipates acoustic waves by essentially wearing them out,” said Jason Nadler, a GTRI research engineer. “It’s a phenomenological shift, fundamentally different from traditional techniques that absorb sound using a more frequency-dependent resonance.”

The two-year project is sponsored by EADS North America, the U.S. operating entity of EADS.

Most sound-deadening materials – such as foams or other cellular materials comprising many small cavities – exploit the fact that acoustic waves resonate through the air on various frequencies, Nadler explains.

Just as air blowing into a bottle produces resonance at a particular tone, an acoustic wave hitting a cellular surface will resonate in certain-size cavities, thereby dissipating its energy. An automobile muffler, for example, uses a resonance-dependent technique to reduce exhaust noise.

The drawback with these traditional noise-reduction approaches is that they only work with some frequencies – those that can find cavities or other structures in which to resonate.

Nadler’s research involves broadband acoustic absorption, a method of reducing sound that doesn’t depend on frequencies or resonance. In this approach, tiny parallel tubes in porous media such as metal or ceramics create a honeycomb-like structure that traps sound regardless of frequency. Instead of resonating, sound waves plunge into the channels and dissipate through a process called viscous shear.

Viscous shear involves the interaction of a solid with a gas or other fluid. In this case, a gas – sound waves composed of compressed air – contacts a solid, the porous medium, and is weakened by the resulting friction.

“It's the equivalent of propelling a little metal sphere down a rubber hose when the sphere is just a hair bigger than the rubber hose,” Nadler explained. “Eventually the friction and the compressive stresses of contact with the tube would stop the sphere.”

This technique, Nadler adds, is derived from classical mechanical principles governing how porous media interact with gases – such as the air through which sound waves move. Noise abatement using micro-scale honeycomb structures represents a new application of these principles.

“You need to have the hole big enough to let the sound waves in, but you also need enough surface area inside to shear against the wave,” he said. “The result is acoustic waves don’t resonate; they just dissipate.”

In researching this approach, Nadler constructed an early prototype from off-the-shelf capillary tubes, which readily formed a low-density, honeycomb-like structure. Further research showed that the ideal material for broadband acoustic absorption would require micron-scale diameter tubes and a much lower structural density.

Creating such low-density structures presents an interesting challenge, Nadler says. It requires a material that’s light, strong enough to enable the walls between the tubes to be very thin, and yet robust enough to function reliably amid the high-temperature, aggressive environments inside aircraft engines.

Among the likely candidates are superalloys, materials that employ unusual blends of metals to achieve desired qualities such as extreme strength, tolerance of high temperatures and corrosion resistance.

Nadler has developed what could be the world’s first superalloy micro honeycomb using a nickel-base superalloy. At around 30 percent density, the material is very light – a clear advantage for airborne applications – and also very strong and heat resistant.

He estimates this new approach could attenuate aircraft engine noise by up to 30 percent. Micro-honeycomb material could also provide another means to protect the aircraft in critical areas prone to impact from birds or other foreign objects by dissipating the energy of the collision.

Technical Contact: Jason Nadler (404-407-6104)
E-mail: jason.nadler@gtri.gatech.edu

John Toon | Newswise Science News
Further information:
http://www.gtri.gatech.edu

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>