Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Micro Honeycomb Materials Reduce Aircraft Noise

Researchers at the Georgia Tech Research Institute (GTRI) are developing innovative honeycomb structures that could make possible a new approach to noise reduction in aircraft.

Noise from commercial and military jet aircraft causes environmental problems for communities near airports, obliging airplanes to follow often complex noise-abatement procedures on takeoff and landing. It can also make aircraft interiors excessively loud.

To address this situation, engineers at the Georgia Tech Research Institute (GTRI) are turning to innovative materials that make possible a new approach to the physics of noise reduction. They have found that honeycomb-like structures composed of many tiny tubes or channels can reduce sound more effectively than conventional methods.

“This approach dissipates acoustic waves by essentially wearing them out,” said Jason Nadler, a GTRI research engineer. “It’s a phenomenological shift, fundamentally different from traditional techniques that absorb sound using a more frequency-dependent resonance.”

The two-year project is sponsored by EADS North America, the U.S. operating entity of EADS.

Most sound-deadening materials – such as foams or other cellular materials comprising many small cavities – exploit the fact that acoustic waves resonate through the air on various frequencies, Nadler explains.

Just as air blowing into a bottle produces resonance at a particular tone, an acoustic wave hitting a cellular surface will resonate in certain-size cavities, thereby dissipating its energy. An automobile muffler, for example, uses a resonance-dependent technique to reduce exhaust noise.

The drawback with these traditional noise-reduction approaches is that they only work with some frequencies – those that can find cavities or other structures in which to resonate.

Nadler’s research involves broadband acoustic absorption, a method of reducing sound that doesn’t depend on frequencies or resonance. In this approach, tiny parallel tubes in porous media such as metal or ceramics create a honeycomb-like structure that traps sound regardless of frequency. Instead of resonating, sound waves plunge into the channels and dissipate through a process called viscous shear.

Viscous shear involves the interaction of a solid with a gas or other fluid. In this case, a gas – sound waves composed of compressed air – contacts a solid, the porous medium, and is weakened by the resulting friction.

“It's the equivalent of propelling a little metal sphere down a rubber hose when the sphere is just a hair bigger than the rubber hose,” Nadler explained. “Eventually the friction and the compressive stresses of contact with the tube would stop the sphere.”

This technique, Nadler adds, is derived from classical mechanical principles governing how porous media interact with gases – such as the air through which sound waves move. Noise abatement using micro-scale honeycomb structures represents a new application of these principles.

“You need to have the hole big enough to let the sound waves in, but you also need enough surface area inside to shear against the wave,” he said. “The result is acoustic waves don’t resonate; they just dissipate.”

In researching this approach, Nadler constructed an early prototype from off-the-shelf capillary tubes, which readily formed a low-density, honeycomb-like structure. Further research showed that the ideal material for broadband acoustic absorption would require micron-scale diameter tubes and a much lower structural density.

Creating such low-density structures presents an interesting challenge, Nadler says. It requires a material that’s light, strong enough to enable the walls between the tubes to be very thin, and yet robust enough to function reliably amid the high-temperature, aggressive environments inside aircraft engines.

Among the likely candidates are superalloys, materials that employ unusual blends of metals to achieve desired qualities such as extreme strength, tolerance of high temperatures and corrosion resistance.

Nadler has developed what could be the world’s first superalloy micro honeycomb using a nickel-base superalloy. At around 30 percent density, the material is very light – a clear advantage for airborne applications – and also very strong and heat resistant.

He estimates this new approach could attenuate aircraft engine noise by up to 30 percent. Micro-honeycomb material could also provide another means to protect the aircraft in critical areas prone to impact from birds or other foreign objects by dissipating the energy of the collision.

Technical Contact: Jason Nadler (404-407-6104)

John Toon | Newswise Science News
Further information:

More articles from Materials Sciences:

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

nachricht Scientists have a new way to gauge the growth of nanowires
19.03.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>