Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method makes culture of complex tissue possible in any lab

10.02.2012
Scientists at the University of California, San Diego have developed a new method for making scaffolds for culturing tissue in three-dimensional arrangements that mimic those in the body.

This advance, published online in the journal Advanced Materials, allows the production of tissue culture scaffolds containing multiple structurally and chemically distinct layers using common laboratory reagents and materials.

According to the UC San Diego researchers, this process is more affordable and widely feasible than previous methods that required expensive equipment and expertise.

The new approach is remarkably simple: solutions of the components of each layer, including polymers, are mixed with varying concentrations of a common inert reagent to control density. The solutions are layered so that the difference in density segregates each solution, and then polymerized so that they form a gel. The structure of each layer can be altered by varying the concentration of polymers, and the discreteness of the transition between layers can be altered by allowing the solutions to diffuse.

Lead author Jerome Karpiak, graduate student in the UCSD Biomedical Sciences Program, said, "We're excited about the relevance of this method to tissue engineering. Since it offers such straightforward spatial control over structure and composition of stratified tissue scaffolds, including cell type and density, this technology could help the field move much faster." Tissues cultured in vitro to mimic those in the body can potentially provide an alternative to transplantation for injured or degenerated tissue.

"We believe this approach will vastly broaden the number of labs capable of culturing complex tissue," said Adah Almutairi, PhD, assistant professor at the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, the Department of Nanoengineering and the Materials Science and Engineering Program at the UCSD Jacobs School of Engineering. "Because manipulation of structure and concentrations of signal molecules is much easier in this system than in intact organisms, it holds great potential to advance the study of development and disease." For example, this method may offer a novel approach to study how surrounding molecules affect the growth of axons in neurodevelopmental disorders.

Additional researchers included Yogesh Ner, PhD. Research was funded in part by the National Institutes of Health Director's New Innovator program and King Abdulaziz City of Science and Technology.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>