Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Metamaterials Device Focuses Sound Waves Like a Camera Lens

08.08.2012
In a cover article in The Journal of Applied Physics, a team of Penn State researchers has designed and computationally tested a type of manmade metamaterial capable for the first time of manipulating a variety of acoustic waves with one simple device.

This invention will benefit almost all current sonic and ultrasonic applications, such as ultrasonic nondestructive evaluations and ultrasonic imaging. The device should also provide more accurate and efficient high-intensity focused ultrasound(HIFU) therapies, a non-invasive heat-based technique targeted at a variety of cancers and neurological disorders.


Sz-Chin Steven Lin, Penn State

The acoustic beam aperture modifier can effectively shrink or expand the aperture of an acoustic beam with minimum energy loss and waveform distortion. With such an acoustic lens, the need for a series of expensive transducers of different sizes is eliminated.

Optical metamaterials have been widely studied in the past decade for applications such as cloaking and perfect lenses. The basic principles of optical metamaterials apply to acoustic metamaterials. Artificial structures are created in patterns that bend the acoustic wave onto a single point, and then refocus the acoustic wave into a wider or narrower beam, depending on the direction of travel through the proposed acoustic beam aperture modifier. The acoustic beam aperture modifier is built upon gradient-index phononic crystals, in this case an array of steel pins embedded in epoxy in a particular pattern. The obstacles (steel pins) slow down the acoustic wave speed in order to bend the acoustic waves into curved rays.

According to post-doctoral scholar and the paper’s lead author, Sz-Chin Steven Lin, while other types of acoustic metamaterials also could focus and defocus an acoustic beam to achieve beam aperture modification (although prior to this work no such beam modifier has been proposed), their device possesses the advantage of small size and high energy conservation. Currently, researchers and surgeons need to have many transducers of different sizes to produce acoustic waves with different apertures. This is analogous to having to swap out lenses on a camera to change the lens’s aperture. With this invention, by changing the modifier attached to the transducer the desired aperture can be easily attained.

“Design of acoustic beam aperture modifier using gradient-index phononic crystals,” by Lin, Bernhard Tittmann, and Tony Jun Huang, is the first design concept for an acoustic beam aperture modifier to appear in the scientific literature, and no acoustic beam modifier device is available in the market. As a result, the authors expect their device could have wide applications across several important acoustic fields, from medical ultrasound to higher sensitivity surface acoustic wave sensors to higher Q factor resonators. The team is currently making a prototype based on this design.

Support for their research came from the National Science Foundation, the National Institutes of Health (NIH) Director’s New Innovator Award, and the Penn State Center for Nanoscale Science (MRSEC). Sz-Chin Steven Lin is a post-doctoral scholar in the Penn State Department of Engineering Science and Mechanics: ssl130@psu.edu. Bernhard Tittmann is Schell professor and professor of engineering science and mechanics: brt4@psu.edu. Tony Jun Huang is associate professor of engineering science and mechanics: juh17@psu.edu.

The Materials Research Institute is Penn State’s home for interdisciplinary materials research, supporting over 220 engineers and scientists and 800-plus graduate students, post-docs and visiting scientists. Visit MRI at www.mri.psu.edu for other recent materials discoveries at Penn State.

| Newswise Science News
Further information:
http://www.mri.psu.edu
http://www.psu.edu

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>