Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017

Researchers from the Faculties of Chemistry and of Materials Science of Lomonosov Moscow State University have developed a new way of increasing the sensitivity of detecting volatile compounds, especially chlorine, using metallic nanoparticles. The work has been published in the Talanta journal.

Metallic nanoparticles, in particular the nanoparticles of gold and silver, are widely used in analytical chemistry. Amongst their uses is creating optical sensors based on the surface plasmonic resonance (the phenomenon of surface plasmon excitation by light) in colloidal solutions and on solid supports.


This is an image of TEM micrograph of aqueous solution of silver triangular nanoplates

Credit: Aleksei Furletov

Modern optical sensors have considerable advantages like high sensitivity, ease of detecting an analytic signal and adjustability of the optical and laboratory analysis parameters. Nevertheless, these devices have certain limitations when it comes to selectivity.

It happens because of aggregative instability of nanoparticles (the particles stick together when collide) which starts to happen during high ionic strength (high intensity of the electric field created by ions). The ion layer formed on the surface of particles is called the double electric layer and is characterized by an electrokinetic potential, also known as the zeta potential. With a decrease in the zeta potential, the electrostatic stabilization of nanoparticles does not happen.

The problem can be solved if the nanoparticles are attached to solid supports; scientists then acquire micro- or nanosensors based on solid particles. There are not many matrix materials for these sensors, and the process of attaching the nanoparticles to supports is not a simple one, so the researchers started working on a problem of modifying the surface of sensor matrices. For that goal they proposed separating the nanoparticles from ions and chemical compounds while retaining their sensitivity.

The Russian chemists invented a technique that combines optical detection using paper test strips with triangular silver nanoparticles spread over them, and dynamic gas extraction (the extraction of a compound from a solution or a dry mixture by means of liquefied gases). Perspectives of this technique were shown by detecting chlorine. Chlorine is often used to purify water, since it destroys the outer shell of bacteria and viruses. Nevertheless, the problem of determining the chlorine concentration in water remains relevant, since the existing techniques are not sensitive enough.

Aleksei Furletov, student of the Department of Analytic Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, one of the paper's authors, says: "The technique developed allows to determine small amounts of gaseous chlorine in the presence of large concentrations of foreign compounds without any sample preparation. This approach can be applied to other analytical systems based on metal nanoparticles, which opens up broad opportunities for the further development of this area of chemical analysis. "

###

The research was made in collaboration with scientists from Southern Federal University, Rostov State Medical University, and Scientific-Research Institute of Chemical Reagents and Special Purity Chemicals.

Media Contact

Yana Khlyustova
science-release@rector.msu.ru

http://www.msu.ru 

Yana Khlyustova | EurekAlert!

More articles from Materials Sciences:

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

nachricht When Proteins Shake Hands
19.02.2018 | Friedrich-Schiller-Universität Jena

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>