Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal in the heart is non-hazardous to health

18.02.2014
Materials Scientists at the University of Jena examine implants made of nickel-titanium alloy in a long-term study

A trousers button, a coin or a watch can be dangerous for people with a nickel allergy. Approximately 1 in 10 Germans is allergic to the metal. “This raises the question of the safety of medical implants containing nickel,” explains Professor Dr. Markus Rettenmayr of the Friedrich-Schiller-Universität Jena.


An occluder made of a nickel-titanium alloy. These medical implants are used for the correction of a defective cardiac septum.

Photo: Jan-Peter Kasper/FSU


The Jena materials scientist Dr.-Ing. Andreas Undisz.

Photo: Jan-Peter Kasper/FSU

Nickel-titanium alloys are increasingly used as material for cardiovascular implants in minimal invasive surgery. Once implanted, nickel-titanium alloys can release small amounts of nickel due to corrosion phenomena, the holder of the Chair of Metallic Materials explains. Our concern was that this could - in particular over a long period of time - lead to a nickel contamination in the patient’s body that possibly results in health problems.

But these concerns are essentially unfounded: The team of Jena scientists led by Professor Rettenmayr and his colleague Dr. Andreas Undisz report in the current issue of the scientific journal ‘Acta Biomaterialia‘ that the release of nickel from wires made of nickel-titanium alloys is very low, also over longer periods of time. The scientists could back up their statement in the first long-term study ever, which examined such nickel release in detail: The testing period for metal release, as requested for governmental approval of a medical implant, is only a few days. In contrast the Jena research team monitored the release of nickel over a time period of eight months.

Examination objects were fine wires from a superelastic nickel-titanium alloy that are, for example, applied in the form of occluders (these are medical implants used for the correction of a defective cardiac septum). Such occluders often consist of two tiny wire-mesh ”umbrellas”, approximately the size of a 1 Euro coin. The superelastic implant can be mechanically drawn into the shape of a thin thread, which then can be placed in a cardiac catheter. “By that means the occluders can be put into place via minimal invasive surgery,” Dr. Undisz says. Ideally the implant will stay in the patient’s body for years or decades.

Dr. Undisz and the doctoral candidate Katharina Freiberg wanted to find out what happens during this period of time with the nickel-titanium wire. They exposed samples of the wires, which underwent different mechanical and thermal pre-treatment, to highly purified water. They then examined the release of nickel according to pre-defined time intervals. “This wasn’t trivial at all”, Undisz says, “because the concentration of the released metal is often at the limit of detection.” However, in co-operation with scientists from the Institute for Clinical Chemistry and Laboratory Medicine of the Jena University Hospital the materials scientists successfully developed a reliable test routine to measure the process of the nickel release.

“Mostly in the first days and weeks, depending on the pre-treatment of the material, considerable amounts of nickel may get released,” Undisz summarizes the results. According to the materials scientist this is due to the mechanical strain of the implant during the surgery. “The deformation damages the thin layer of oxide covering the material. As a consequence the initial nickel release increases.” In the long run, however, the nickel release decreases to amounts of a few nanograms per day and is hence far below the amount of nickel that we absorb anyway through our food on a daily basis.

Original Publication:
Freiberg KE, Bremer-Streck S, Kiehntopf M, Rettenmayr M, Undisz A: Effect of thermomechanical pre-treatment on short- and long-term Ni release from biomedical NiTi, Acta Biomaterialia (2014), doi: 10.1016/j.actbio.2014.01.003
Contact:
Dr.-Ing. Andreas Undisz
Otto-Schott-Institut für Materialforschung
Friedrich Schiller University Jena
Loebdergraben 32, 07743 Jena
Germany
Phone: ++49 3641 947768
Email: andreas.undisz[at]uni-jena.de

Dr. Ute Schönfelder | Universität Jena
Further information:
http://www.uni-jena.de

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>