Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015

A research group at Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), succeeded in developing porous particles (mesoporous particles) consisting solely of phospholipids, a biological component, that are suitable for use as a drug delivery system.

A research group led by MANA Scientist Kohsaku Kawakami, postdoctoral researcher Shaoling Zhang and MANA Principal Investigator Katsuhiko Ariga, at the International Center for Materials Nanoarchitectonics (MANA), NIMS (Sukekatsu Ushioda, President), succeeded in developing porous particles (mesoporous particles) consisting solely of phospholipids, a biological component, that are suitable for use as a drug delivery system.


Figure 1. External views of porous phospholipid particles (electron micrographs) (a, b) Particles created in organic (non-aqueous) solvent, (c, d) particles created in organic solvent in the presence of small amount of water. Only hydrogenated soybean lecithin was used to create them. The shape of the particles varies greatly depending on the presence/absence of water in the solvent.

Copyright : MANA, NIMS

This study had been published in the Journal of Physical Chemistry C on 16 March, 2015. (Shaoling Zhang, Kohsaku Kawakami, Lok Kumar Shrestha, Gladstone Christopher Jayakumar, Jonathan P. Hill, and Katsuhiko Ariga, article title: Totally phospholipidic mesoporous particles) J. Phys. Chem. C, 2015, 119 (13), pp 7255–7263, DOI: 10.1021/acs.jpcc.5b00159.

Mesoporous materials are a type of material capable of serving as a drug delivery system. In conventional studies, hard materials such as silica and carbon materials have been used for such purposes, posing safety concerns to patients. The mesoporous material developed in this study consists exclusively of biologically-derived materials and is therefore expected to be very safe for humans.

Acquisition of official approval is one of the hurdles in the development of materials for use as a drug delivery system. To develop a certified pharmaceutical product, it is necessary to demonstrate the safety of the additive to be used before investigating the safety of the product itself.

For this reason, pharmaceutical companies tend to avoid using new additives, which had been slowing the development of new drug carriers. However, the phospholipids examined in this study have already been used as emulsions and liposomes, and thus are not regarded as new additives. This fact is a great advantage of this material in view of commercialization.

This material comprises highly uniform mesoporous particles with diameters ranging between 5 and 20 μm, depending on their composition. It is a very lightweight material with a bulk density of about 0.02 g/cm3, from which an aerodynamic diameter of 1 to 3 μm is calculated. These are ideal features for this material to be used as a powder inhalation carrier.

Since this material consists of lipid bilayer membranes that are similar to biological membranes, it possesses the characteristics of both mesoporous particles and liposomes. For example, it can be used with both hydrophobic and hydrophilic drugs. Hydrophobic drugs can be embedded in a lipid bilayer membrane, and hydrophilic drugs can be inserted into hydrophilic regions between lipid bilayer membranes.

Furthermore, as it is also feasible for the material to hold drugs in its mesopores, the material is capable of carrying drugs with various physical properties. Since phospholipids can be easily modified, it is conceivable that various kinds of surface modifications can be applied to the material.

This material is suited for industrial production as it can be easily prepared through freeze-drying. And it is expected to be useful as a drug carrier assuming any administration route and as a cosmetic ingredient. The unique shape of the particles also may add value to the commercial product.

This study had been published in the Journal of Physical Chemistry C issued by the American Chemical Society. It was also presented at the MANA Symposium at the Tsukuba International Congress Center (presentation: 3:20 p.m. on March 12, titled “Bio-inspired nanoarchitectonics for early and patient-oriented medical treatment” by K. Kawakami).


Associated links
NIMS article

Mikiko Tanifuji | ResearchSEA

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>