Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thanks for the Memory: More Room for Data in ‘Phase-Change’ Material

07.05.2012
A team led by Johns Hopkins engineers has discovered some previously unknown properties of a common memory material, paving the way for development of new forms of memory drives, movie discs and computer systems that retain data more quickly, last longer and allow far more capacity than current data storage media.

The work was reported April 16 in the online edition of Proceedings of the National Academy of Sciences.

The research focused on an inexpensive phase-change memory alloy composed of germanium, antimony and tellurium, called GST for short. The material is already used in rewritable optical media, including CD-RW and DVD-RW discs. But by using diamond-tipped tools to apply pressure to the materials, the Johns Hopkins-led team uncovered new electrical resistance characteristics that could make GST even more useful to the computer and electronics industries.

“This phase-change memory is more stable than the material used in the current flash drives. It works 100 times faster and is rewritable about 100,000 times,” said the study’s lead author, Ming Xu, a doctoral student in the Department of Materials Science and Engineering in Johns Hopkins’ Whiting School of Engineering. “Within about five years, it could also be used to replace hard drives in computers and give them more memory.”

GST is called a phase-change material because, when exposed to heat, areas of GST can change from an amorphous state, in which the atoms lack an ordered arrangement, to a crystalline state, in which the atoms are neatly lined up in a long-range order. In its amorphous state, GST is more resistant to electric current. In its crystalline state, it is less resistant. The two phases also reflect light differently, allowing the surface of a DVD to be read by A tiny laser. The two states correspond to one and zero, the language of computers.

Although this phase-change material has been used for at least two decades, the precise mechanics of this switch from one state to another have remained something of a mystery because it happens so quickly -- in nanoseconds -- when the material is heated.

To solve this mystery, Xu and his team used another method to trigger the change more gradually. The researchers used two diamond tips to compress the material. They employed a process called X-ray diffraction and a computer simulation to document what was happening to the material at the atomic level. The researchers found that they could “tune” the electrical resistivity of the material during the time between its change from amorphous to crystalline form.

“Instead of going from black to white, it’s like finding shades or a shade of gray in between,” said Xu’s doctoral adviser, En Ma, a professor of materials science and engineering, and a co-author of the PNAS paper. “By having a wide range of resistance, you can have a lot more control. If you have multiple states, you can store a lot more data.”

Other co-authors of the paper were Y. Q. Cheng of Johns Hopkins and the Oak Ridge National Laboratory in Tennessee; L. Wang of the Carnegie Institution of Washington in Argonne, Ill., and Jilin University in China; H. W. Sheng of George Mason University in Fairfax, Va.; Y. Meng and W. G. Wang of the Carnegie Institution of Washington; and X. D. Han of Beijing University of Technology in China.

Funding for the research was provided by the U.S. Department of Energy, the Office of Naval Research, the Chinese National Basic Research Program, the National Science Foundation, the W. M. Keck Foundation and Argonne National Laboratory.

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>