Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanically and visually perfect seams

24.04.2014

New absorber systems improve the quality of laser welded seams on technical textiles

As part of the research project (AiF No. 17031 N) "Absorber systems for the laser welding of textiles", scientists at the Hohenstein Institute (Bönnigheim) and the DWI Leibnitz Institute for Interactive Materials (Aachen) have developed new absorber systems for laser welding technical textiles in the infrared spectrum. The researchers have already used them to weld all kinds of different textile materials.


Safety jacket left - all seams stitched conventionally. Safety jacket right - all seams produced by laser welding.

® Hohenstein Institute

With the results of their research, the scientists have overcome one of the main challenges of laser welding: only a few textiles absorb laser radiation in the near-infrared light spectrum and are therefore intrinsically suitable for laser welding. To join other textiles successfully, you have to apply absorber materials to the proposed locations of the seams which absorb the near-infrared light, melt and so join themselves together. However, the absorbers that were commercially available until now caused discolouring around the seams on light-coloured materials and so their potential applications were limited.

The new absorbers, on the other hand, produce a technically high-quality bond between textile materials. The seams are resistant to liquids, mechanically strong, flexible and free of any discoloration. The way is therefore open for laser welding to be used as an alternative, highly effective and promising technology for bonding textiles.

Especially when it comes to producing technical and medical textiles, laser welding offers a number of advantages over traditional joining methods. The seams can be made watertight in a single process. This means that, in contrast to traditional seams, the subsequent "taping" of the seams, whereby special tapes are applied to seal the holes caused in the textile material by the stitching needles, is no longer necessary. Seams created by laser welding are also flat, stretchy, flexible and proof against liquids and gases and they have impressively high tensile strength.

Thanks to automatic in-line monitoring of the welding process, the quality of the joint is measured automatically. This means seam failures are avoided. The cost of checking seam quality is therefore minimised, which is especially important in the manufacture of high-quality products such as medical textiles, protective clothing, outdoor equipment and textiles used in vehicle manufacture and furniture-making.

During the project, the setting parameters for laser welding such as the temperature, speed and pressure were adjusted to suit various different absorbers and textiles. This will enable the manufacturing companies to use the process directly for their own materials and product range.

The new-formula absorbers are easy to use, economical and compatible with different textiles (woven, knitted and warp-knitted textiles, non-wovens, laminates etc.) and accessories (zips, reflectors etc.) . Especially on light and transparent textiles, they produce visually and mechanically perfect seams with excellent performance characteristics.

Laser welding is suitable both for one-off manufacture and for manufacturing with a high degree of automation. Minimising the number of process stages and increasing the quality, together with the high flexibility of the process, will help small and medium-sized companies to increase their turnover and give them competitive advantages over the users of conventional textile joining technologies.

Contact:
Hohenstein Institute
Dr. Edith Classen
e.classen@hohenstein.de

Weitere Informationen:

http://www.hohenstein.de/en/inline/pressrelease_61122.xhtml

Andrea Höra | idw - Informationsdienst Wissenschaft

Further reports about: clothing conventional liquids manufacture materials spectrum textile

More articles from Materials Sciences:

nachricht Ultrasonic Fingerprint Sensor May Take Smartphone Security to New Level
01.07.2015 | American Institute of Physics (AIP)

nachricht Physical study may give boost to hydrogen cars
01.07.2015 | American Institute of Physics

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>