Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McMaster researchers achieve a first by coaxing molecules into assembling themselves

19.04.2016

Major advance creates the potential for useful new materials

Imagine throwing Lego pieces into the air and seeing them fall to the ground assembled into the shape of a house or plane.


This is a micrograph of the crystal of a tellurazole oxide developed at McMaster University.

Credit: Vargas Laboratory, McMaster University

Nature effortlessly does the equivalent all the time, using molecules as building blocks.

The right combination of ingredients and conditions spontaneously assembles structures as complex as viruses or cellular membranes. Chemists marvel at this very efficient approach to creating large molecular structures and keep searching for new ways to emulate the process using their own components.

Now, in a McMaster University laboratory, chemistry researchers have managed to coax molecules known as tellurazole oxides into assembling themselves into cyclic structures - a major advance in their field that creates a new and promising set of materials.

"This is a seed we have found - one we have never seen. It has sprouted, now we need to see how tall the tree will grow and what kind of fruit it will bear," says Ignacio Vargas Baca, an associate professor in McMaster's Department of Chemistry and Chemical Biology. "Once we understand the properties of these new materials, we can look at their potential applications."

The discovery is published today in the prestigious science journal Nature Communications.

Barca's group works in the realm of supramolecular chemistry, where the key is to exploit the forces that keep molecules together. Hydrogen atoms, for example, can form strong bridges between water molecules or pairs of DNA strands.

Earlier, the realization that atoms of iodine and bromine can act in a similar way had sparked great excitement in chemistry circles, giving rise to the hot field of "halogen bonding," where other researchers have had success with enormous assemblies, but have had difficulties controlling the association of just a few molecules.

Meanwhile, Vargas' group moved over one column on the periodic table of elements to work with chalcogens instead.

They discovered that certain molecules that contain the element tellurium assemble automatically into rings in solution, a success that has no rival in halogen bonding and constitutes a significant advance in supramolecular chemistry.

For now, he and his team envision uses in areas as diverse as communication technologies, gas storage and catalysis.

Vargas credits these discoveries to McMaster's facilities and expertise in nuclear magnetic resonance and X-ray diffraction, and the undergraduate chemistry program's emphasis on experimental education. He notes that Peter Ho, the article's first author, did all his work on the paper as an undergraduate.

###

Vargas' research was funded by programs of the Natural Sciences and Engineering Research Council of Canada, including the Discovery Grants, Postgraduate Scholarships, and the Summer Undergraduate Research Awards, as well as McMaster's McWork program.

Photos of Vargas, his team, and the structure they have created are available at http://adobe.ly/1qBWfSM

Ignacio Vargas Baca (his surname is Vargas on second reference) is available at vargasi@mcmaster.ca.

For more information or to book an interview in McMaster's TV studio, please contact:

Wade Hemsworth
Public Relations Manager
McMaster University
905-525-9140, ext. 27988
hemswor@mcmaster.ca

Michelle Donovan
Public Relations Manager
McMaster University
905-525-9140, ext. 22869
donovam@mcmaster.ca

Media Contact

Ignacio Vargas Baca
vargasi@mcmaster.ca

 @mcmasteru

http://www.mcmaster.ca

Ignacio Vargas Baca | EurekAlert!

More articles from Materials Sciences:

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

nachricht Neutrons provide insights into increased performance for hybrid perovskite solar cells
24.04.2018 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>