Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials: Two ways to tame a radical

25.04.2013
Trapping free electrons with polycyclic aromatic molecules creates materials with enhanced optical, electronic and magnetic properties

Replacing traditional semiconductors with flexible and lightweight organic components has the potential to realize significant cost savings for manufacturers. Recently, a promising class of organic materials known as open-shell polycyclic aromatic hydrocarbons (PAHs) has gained researchers' attention.

These molecules consist of interlocked, benzene-like rings and contain unpaired electrons, or ‘free-radical’ centers. Interactions between the radical centers and aromatic electrons make these compounds extremely responsive to light- and electron-based stimuli. Unfortunately, these same radical electrons can quickly degrade PAH chemical structures, rendering them unusable.

Jishan Wu from the A*STAR Institute of Materials Research and Engineering in Singapore and an international team of co-workers have now devised a new stabilization strategy that promises to make open-shell PAHs even more practical1. Through clever modification of a prototypical compound known as Chichibabin’s hydrocarbon, the team has produced two types of PAHs that retain active radical centers for unprecedented amounts of time.

Chichibabin’s hydrocarbon has a sextet of aromatic rings that thermodynamically stabilize radical centers. However, it also has a strong chemical affinity for oxygen atoms and tends to polymerize in their presence. To resolve this issue, Wu and co-workers used a process known as benzannulation to add four additional aromatic benzene rings to the PAH framework. They anticipated this design could enhance thermodynamic stability and block kinetic polymerization interactions.

When the researchers chemically excited the tetrabenzo-Chichibabin’s hydrocarbon to an open-shell system, they saw that the radical centers remained active for an unusually long time — two full days — before returning to the low-energy ground state. Using a combination of high-resolution spectroscopy and theoretical calculations, the team discovered the radical’s benzene rings were oriented at right angles to one another, while the ground-state compound had a relatively flat, butterfly-like ring layout. The large energy barrier between these two geometries kept the radical active. “This opens the possibility of accessing each form of the PAH molecule and understanding its physical properties,” says Wu.

The researchers also modified the tetrabenzo-Chichibabin’s hydrocarbon with aromatic fluorenyl rings that have well-known radical stabilizing effects. In fact, the stabilizing capacity of this compound proved so strong that the open-shell radical became the lowest-energy state, and the molecule remained stable for months under ambient air and light conditions.

Experiments revealed these new open-shell PAHs to have valuable properties including enhanced two-photon absorption, a strong magnetic response and multiple redox states. Wu notes that these findings may lead to the development of better photodynamic therapies and magnetic imaging techniques in the future.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

Zeng, Z., Sung, Y. M., Bao, N., Tan, D., Lee, R. et al. Stable tetrabenzo-Chichibabin’s hydrocarbons: Tunable ground state and unusual transition between their closed-shell and open-shell resonance forms. Journal of the American Chemical Society 134, 14513–14525 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6662
http://www.researchsea.com

Further reports about: benzene rings chemical structure organic material oxygen atom

More articles from Materials Sciences:

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht Nature's toughest substances decoded
05.12.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>