Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials: Two ways to tame a radical

25.04.2013
Trapping free electrons with polycyclic aromatic molecules creates materials with enhanced optical, electronic and magnetic properties

Replacing traditional semiconductors with flexible and lightweight organic components has the potential to realize significant cost savings for manufacturers. Recently, a promising class of organic materials known as open-shell polycyclic aromatic hydrocarbons (PAHs) has gained researchers' attention.

These molecules consist of interlocked, benzene-like rings and contain unpaired electrons, or ‘free-radical’ centers. Interactions between the radical centers and aromatic electrons make these compounds extremely responsive to light- and electron-based stimuli. Unfortunately, these same radical electrons can quickly degrade PAH chemical structures, rendering them unusable.

Jishan Wu from the A*STAR Institute of Materials Research and Engineering in Singapore and an international team of co-workers have now devised a new stabilization strategy that promises to make open-shell PAHs even more practical1. Through clever modification of a prototypical compound known as Chichibabin’s hydrocarbon, the team has produced two types of PAHs that retain active radical centers for unprecedented amounts of time.

Chichibabin’s hydrocarbon has a sextet of aromatic rings that thermodynamically stabilize radical centers. However, it also has a strong chemical affinity for oxygen atoms and tends to polymerize in their presence. To resolve this issue, Wu and co-workers used a process known as benzannulation to add four additional aromatic benzene rings to the PAH framework. They anticipated this design could enhance thermodynamic stability and block kinetic polymerization interactions.

When the researchers chemically excited the tetrabenzo-Chichibabin’s hydrocarbon to an open-shell system, they saw that the radical centers remained active for an unusually long time — two full days — before returning to the low-energy ground state. Using a combination of high-resolution spectroscopy and theoretical calculations, the team discovered the radical’s benzene rings were oriented at right angles to one another, while the ground-state compound had a relatively flat, butterfly-like ring layout. The large energy barrier between these two geometries kept the radical active. “This opens the possibility of accessing each form of the PAH molecule and understanding its physical properties,” says Wu.

The researchers also modified the tetrabenzo-Chichibabin’s hydrocarbon with aromatic fluorenyl rings that have well-known radical stabilizing effects. In fact, the stabilizing capacity of this compound proved so strong that the open-shell radical became the lowest-energy state, and the molecule remained stable for months under ambient air and light conditions.

Experiments revealed these new open-shell PAHs to have valuable properties including enhanced two-photon absorption, a strong magnetic response and multiple redox states. Wu notes that these findings may lead to the development of better photodynamic therapies and magnetic imaging techniques in the future.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

Zeng, Z., Sung, Y. M., Bao, N., Tan, D., Lee, R. et al. Stable tetrabenzo-Chichibabin’s hydrocarbons: Tunable ground state and unusual transition between their closed-shell and open-shell resonance forms. Journal of the American Chemical Society 134, 14513–14525 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6662
http://www.researchsea.com

Further reports about: benzene rings chemical structure organic material oxygen atom

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>