Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials scientists are studying a sensor detecting smallest quantities of toxic gas in biogas

08.10.2013
The biological route of the methane production is based on the decomposition of wood, energy plants and organic waste carried out by microorganisms.

In the course of the energy turnaround, methane produced in biogas plants can be fed into the natural gas net, provided that it is free of impurities. Thus, hydrogen or highly toxic hydrogen sulfide is only allowed to be present in very small quantities in order to protect the consumer's health or to protect him against risks of explosion.

INM – Leibniz Institute for New Materials is developing a sensor with specific properties that can reliably detect hydrogen sulfide in smallest concentrations using an optical path.

For the new sensor, the scientists at INM aim for the development of a functional layer, which does not need oxygen for the proof of hydrogen sulfide (H2S). Apart from that, the layer is supposed to enable the sensor to be responsive to hydrogen sulfide in quantities of a few hundredth of a percent at any time and respond exclusively to hydrogen sulfide within the shortest time.

For this purpose, the scientists at INM will produce a special functional layer that changes its properties in the presence of hydrogen sulfide, such as change of color, color permeation, the way of light scattering or reflection. "We will use optical analysis techniques, which are not yet obtainable on the market", says Peter William de Oliveira, head of the Program Division Optical Materials. "They will be the key issues of our new developments." The scientists expect a corresponding response of the sensor to hydrogen sulfide in the gas, even in the range of a few per mil. "With an appropriate receiver, we can easily convert these changes in a signal "too much hydrogen sulfide", says the materials scientist.

Although there are various providers of such sensors on the market at the moment, these are not suitable for the use in biogas plants for a variety of reasons. "Many of these sensors function via chemical reactions, where oxygen is needed," the chemist explains. Other sensors work via electrochemical methods or via chemiluminescence. They are either expensive or too slow or do not only indicate hydrogen sulfide but also other gases so that the quantity of H2S cannot be clearly identified.

While INM is in charge of the development of the special layer, the medium-sized companies involved are working on the corresponding electronic and technical equipment for the production of the entire system.

Background:
Together with the medium-sized companies Materion GmbH, Wismar, and Sensolute GmbH, Eggenstein-Leopoldshafen, INM is working on the development of "new sensor systems on the basis of optically switchable thin films for the control of regeneratively produced gases". The project "OptoSens" is funded by the Federal Ministry of Economics and Technology (BMWI) in the framework of the program "Central Innovation Program SME" (Zentrales Innovationsprogramm Mittelstand – ZIM). The project partners aim for the development of a sensor for the large-scale production by the end of 2015.
Contact:
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head program division Optical Materials
Phone: +49681-9300-148
peter.oliveira@inm-gmbh.de
INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for implant surfaces, new surfaces for tribological applications and nanosafety/nanobio interaction. Research at INM is performed in three fields: Chemical Nanotechnology, Interface Materials, and Materials in Biology.

INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 190 employees.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/en/
http://www.leibniz-gemeinschaft.de/en/home/

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>