Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials scientists are studying a sensor detecting smallest quantities of toxic gas in biogas

08.10.2013
The biological route of the methane production is based on the decomposition of wood, energy plants and organic waste carried out by microorganisms.

In the course of the energy turnaround, methane produced in biogas plants can be fed into the natural gas net, provided that it is free of impurities. Thus, hydrogen or highly toxic hydrogen sulfide is only allowed to be present in very small quantities in order to protect the consumer's health or to protect him against risks of explosion.

INM – Leibniz Institute for New Materials is developing a sensor with specific properties that can reliably detect hydrogen sulfide in smallest concentrations using an optical path.

For the new sensor, the scientists at INM aim for the development of a functional layer, which does not need oxygen for the proof of hydrogen sulfide (H2S). Apart from that, the layer is supposed to enable the sensor to be responsive to hydrogen sulfide in quantities of a few hundredth of a percent at any time and respond exclusively to hydrogen sulfide within the shortest time.

For this purpose, the scientists at INM will produce a special functional layer that changes its properties in the presence of hydrogen sulfide, such as change of color, color permeation, the way of light scattering or reflection. "We will use optical analysis techniques, which are not yet obtainable on the market", says Peter William de Oliveira, head of the Program Division Optical Materials. "They will be the key issues of our new developments." The scientists expect a corresponding response of the sensor to hydrogen sulfide in the gas, even in the range of a few per mil. "With an appropriate receiver, we can easily convert these changes in a signal "too much hydrogen sulfide", says the materials scientist.

Although there are various providers of such sensors on the market at the moment, these are not suitable for the use in biogas plants for a variety of reasons. "Many of these sensors function via chemical reactions, where oxygen is needed," the chemist explains. Other sensors work via electrochemical methods or via chemiluminescence. They are either expensive or too slow or do not only indicate hydrogen sulfide but also other gases so that the quantity of H2S cannot be clearly identified.

While INM is in charge of the development of the special layer, the medium-sized companies involved are working on the corresponding electronic and technical equipment for the production of the entire system.

Background:
Together with the medium-sized companies Materion GmbH, Wismar, and Sensolute GmbH, Eggenstein-Leopoldshafen, INM is working on the development of "new sensor systems on the basis of optically switchable thin films for the control of regeneratively produced gases". The project "OptoSens" is funded by the Federal Ministry of Economics and Technology (BMWI) in the framework of the program "Central Innovation Program SME" (Zentrales Innovationsprogramm Mittelstand – ZIM). The project partners aim for the development of a sensor for the large-scale production by the end of 2015.
Contact:
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head program division Optical Materials
Phone: +49681-9300-148
peter.oliveira@inm-gmbh.de
INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for implant surfaces, new surfaces for tribological applications and nanosafety/nanobio interaction. Research at INM is performed in three fields: Chemical Nanotechnology, Interface Materials, and Materials in Biology.

INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 190 employees.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/en/
http://www.leibniz-gemeinschaft.de/en/home/

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>