Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials scientists find better model for glass creation

06.11.2009
Put new wrinkle in old approach

Harvard materials scientists have come up with what they believe is a new way to model the formation of glasses, a type of amorphous solid that includes common window glass.

Glasses form through the process of vitrification, in which a glass-forming liquid cools and slowly becomes a solid whose molecules, though they've stopped moving, are not permanently locked into a crystal structure. Instead, they're more like a liquid that has merely stopped flowing, though they can continue to move over long stretches of time.

"A glass is permanent, but only over a certain time scale. It's a liquid that just stopped moving, stopped flowing," said David Weitz, Mallinckrodt Professor of Physics and Applied Physics at Harvard's School of Engineering and Applied Sciences (SEAS) and the Department of Physics. "A crystal has a very unique structure, a very ordered structure that repeats itself over and over. A glass never repeats itself. It wants to be a crystal but something is preventing it from being a crystal."

Other than window glass, made from silica or silicon dioxide, Weitz said many sugars are glasses. Honey, for example, is not a glass at room temperature, but as it cools down and solidifies, it becomes a glass.

Scientists like Weitz use models to understand the properties of glasses. Weitz and members of his research group, together with colleagues at Columbia University and the University of North Texas, report in this week's Nature a new wrinkle on an old model that seems to improve how well it mimics the behavior of glass.

The model is a colloidial fluid, a liquid with tiny particles, or colloids, suspended evenly in it. Milk, for example, is a familiar colloidial fluid. Scientists model solidifying glasses using colloids by adding more particles to the fluid. This increases the particles' concentration, making the fluid thicker, and making it flow more slowly. The advantage of this approach to studying glasses directly is size, Weitz said. The colloid particles are 1,000 times bigger than a molecule of a glass and can be observed with a microscope.

"They're big; they're slow. They get slower and slower and slower and slower," Weitz said. "They don't behave like a fluid. They don't behave like a crystal. They behave in many ways like a glass."

The problem with traditional colloids used in these models, however, is that they often rapidly solidify past a certain point, unlike most glasses, which continue to flow ever more slowly as they gradually solidify. Weitz and colleagues created a colloid that behaves more like a glass in that way by using soft, compressible particles in the colloid instead of hard ones. This makes the particles squeeze together as more particles are added, making them flow more slowly, but delaying the point at which it solidifies, giving it a more glasslike behavior.

By varying the colloidal particles' stiffness, researchers can vary the colloidal behavior and improve the model's faithfulness to various glasses.

"There's this wealth of behavior in molecular glass and we never saw this wealth of behavior in colloid particles," Weitz said. "The fact you can visualize things gives you tremendous insight you can't get with molecular glass."

Weitz's co-authors are Johan Mattsson, Hans M. Wyss, and Alberto Fernandez-Nieves of Harvard's Department of Physics and School of Engineering and Applied Sciences; Kunimasa Miyazaki and David R. Reichman of Columbia University; and Zhibing Hu of the University of North Texas. Their work was funded by the National Science Foundation, Harvard's Materials Research Science and Engineering Center, the Hans Werthén Foundation, the Wenner-Gren Foundation, the Knut and Alice Wallenberg Foundation and the Royal Society of Arts and Sciences in Göteborg, the Ministerio de Ciencia e Innovación and the University of Almeria, and KAKENHI.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>