Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials scientists find better model for glass creation

06.11.2009
Put new wrinkle in old approach

Harvard materials scientists have come up with what they believe is a new way to model the formation of glasses, a type of amorphous solid that includes common window glass.

Glasses form through the process of vitrification, in which a glass-forming liquid cools and slowly becomes a solid whose molecules, though they've stopped moving, are not permanently locked into a crystal structure. Instead, they're more like a liquid that has merely stopped flowing, though they can continue to move over long stretches of time.

"A glass is permanent, but only over a certain time scale. It's a liquid that just stopped moving, stopped flowing," said David Weitz, Mallinckrodt Professor of Physics and Applied Physics at Harvard's School of Engineering and Applied Sciences (SEAS) and the Department of Physics. "A crystal has a very unique structure, a very ordered structure that repeats itself over and over. A glass never repeats itself. It wants to be a crystal but something is preventing it from being a crystal."

Other than window glass, made from silica or silicon dioxide, Weitz said many sugars are glasses. Honey, for example, is not a glass at room temperature, but as it cools down and solidifies, it becomes a glass.

Scientists like Weitz use models to understand the properties of glasses. Weitz and members of his research group, together with colleagues at Columbia University and the University of North Texas, report in this week's Nature a new wrinkle on an old model that seems to improve how well it mimics the behavior of glass.

The model is a colloidial fluid, a liquid with tiny particles, or colloids, suspended evenly in it. Milk, for example, is a familiar colloidial fluid. Scientists model solidifying glasses using colloids by adding more particles to the fluid. This increases the particles' concentration, making the fluid thicker, and making it flow more slowly. The advantage of this approach to studying glasses directly is size, Weitz said. The colloid particles are 1,000 times bigger than a molecule of a glass and can be observed with a microscope.

"They're big; they're slow. They get slower and slower and slower and slower," Weitz said. "They don't behave like a fluid. They don't behave like a crystal. They behave in many ways like a glass."

The problem with traditional colloids used in these models, however, is that they often rapidly solidify past a certain point, unlike most glasses, which continue to flow ever more slowly as they gradually solidify. Weitz and colleagues created a colloid that behaves more like a glass in that way by using soft, compressible particles in the colloid instead of hard ones. This makes the particles squeeze together as more particles are added, making them flow more slowly, but delaying the point at which it solidifies, giving it a more glasslike behavior.

By varying the colloidal particles' stiffness, researchers can vary the colloidal behavior and improve the model's faithfulness to various glasses.

"There's this wealth of behavior in molecular glass and we never saw this wealth of behavior in colloid particles," Weitz said. "The fact you can visualize things gives you tremendous insight you can't get with molecular glass."

Weitz's co-authors are Johan Mattsson, Hans M. Wyss, and Alberto Fernandez-Nieves of Harvard's Department of Physics and School of Engineering and Applied Sciences; Kunimasa Miyazaki and David R. Reichman of Columbia University; and Zhibing Hu of the University of North Texas. Their work was funded by the National Science Foundation, Harvard's Materials Research Science and Engineering Center, the Hans Werthén Foundation, the Wenner-Gren Foundation, the Knut and Alice Wallenberg Foundation and the Royal Society of Arts and Sciences in Göteborg, the Ministerio de Ciencia e Innovación and the University of Almeria, and KAKENHI.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>