Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials scientists find better model for glass creation

06.11.2009
Put new wrinkle in old approach

Harvard materials scientists have come up with what they believe is a new way to model the formation of glasses, a type of amorphous solid that includes common window glass.

Glasses form through the process of vitrification, in which a glass-forming liquid cools and slowly becomes a solid whose molecules, though they've stopped moving, are not permanently locked into a crystal structure. Instead, they're more like a liquid that has merely stopped flowing, though they can continue to move over long stretches of time.

"A glass is permanent, but only over a certain time scale. It's a liquid that just stopped moving, stopped flowing," said David Weitz, Mallinckrodt Professor of Physics and Applied Physics at Harvard's School of Engineering and Applied Sciences (SEAS) and the Department of Physics. "A crystal has a very unique structure, a very ordered structure that repeats itself over and over. A glass never repeats itself. It wants to be a crystal but something is preventing it from being a crystal."

Other than window glass, made from silica or silicon dioxide, Weitz said many sugars are glasses. Honey, for example, is not a glass at room temperature, but as it cools down and solidifies, it becomes a glass.

Scientists like Weitz use models to understand the properties of glasses. Weitz and members of his research group, together with colleagues at Columbia University and the University of North Texas, report in this week's Nature a new wrinkle on an old model that seems to improve how well it mimics the behavior of glass.

The model is a colloidial fluid, a liquid with tiny particles, or colloids, suspended evenly in it. Milk, for example, is a familiar colloidial fluid. Scientists model solidifying glasses using colloids by adding more particles to the fluid. This increases the particles' concentration, making the fluid thicker, and making it flow more slowly. The advantage of this approach to studying glasses directly is size, Weitz said. The colloid particles are 1,000 times bigger than a molecule of a glass and can be observed with a microscope.

"They're big; they're slow. They get slower and slower and slower and slower," Weitz said. "They don't behave like a fluid. They don't behave like a crystal. They behave in many ways like a glass."

The problem with traditional colloids used in these models, however, is that they often rapidly solidify past a certain point, unlike most glasses, which continue to flow ever more slowly as they gradually solidify. Weitz and colleagues created a colloid that behaves more like a glass in that way by using soft, compressible particles in the colloid instead of hard ones. This makes the particles squeeze together as more particles are added, making them flow more slowly, but delaying the point at which it solidifies, giving it a more glasslike behavior.

By varying the colloidal particles' stiffness, researchers can vary the colloidal behavior and improve the model's faithfulness to various glasses.

"There's this wealth of behavior in molecular glass and we never saw this wealth of behavior in colloid particles," Weitz said. "The fact you can visualize things gives you tremendous insight you can't get with molecular glass."

Weitz's co-authors are Johan Mattsson, Hans M. Wyss, and Alberto Fernandez-Nieves of Harvard's Department of Physics and School of Engineering and Applied Sciences; Kunimasa Miyazaki and David R. Reichman of Columbia University; and Zhibing Hu of the University of North Texas. Their work was funded by the National Science Foundation, Harvard's Materials Research Science and Engineering Center, the Hans Werthén Foundation, the Wenner-Gren Foundation, the Knut and Alice Wallenberg Foundation and the Royal Society of Arts and Sciences in Göteborg, the Ministerio de Ciencia e Innovación and the University of Almeria, and KAKENHI.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Materials Sciences:

nachricht Triboelectric nanogenerators boost mass spectrometry performance
28.02.2017 | Georgia Institute of Technology

nachricht Nano 'sandwich' offers unique properties
28.02.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>