Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials Science: metals with diamonds

28.05.2009
An Inter-Faculty research team at the Vienna University of Technology is examining dimensionally stable and thermoconducting material combinations for nuclear fusion.

Material scientists are developing composites which are made of dissimilar materials in order to be able to offer new customised application profiles. Researchers at the Vienna University of Technology (TU) have examined promising metal-matrix composites, which are very good conductors of heat and are able to withstand mechanical loads at elevated temperatures of up to 550 degrees and expand only very little with increasing temperature.

These material combinations may be used in the ITER nuclear reactor, which is currently being constructed at Cadarache, France, and where they are intended to be used in cooling the first wall of the experimental reactor. Enhanced heat removal is playing an increasingly important role in the field of power electronics for engines and computers. Unless excess heat can be dissipated, the power of computers can no longer be increased. Last but not least, metal matrix composites can be used as cooling materials in rocket engines.

Four TU institutes are working on material combinations as part of an EU project of the 6th Framework Programme called ExtreMat (http://www.extremat.org/), which stands for "New Materials for Extreme Environments". "We examined some metal matrix composites and their interfacial bonding which are promising for use in nuclear reactor heat sinks, rocket engines or in power electronics. The characterisation of these heterogeneous materials falls within our area of competency", says Professor H. Peter Degischer, Head of the Institute of Materials Science and Material Technology at the TU Vienna. Copper and silver are efficient conductors, but due to their relatively high coefficient of thermal expansion, do not provide enough inherent strength when changes in temperature occur. In addition, their mechanical strength is sharply reduced at elevated temperatures. Copper deforms like butter from 300 degrees onwards". Strengthening with silicon carbide or tungsten fibres with some 0.1 millimetres or carbon fibres with less than 1/100 millimetres diameter increases the strength and the form stability without reducing conductivity. Degischer believes that a combination of silver with diamond particles of approx. 0.1 millimetres of diameter which are connected by means of thin silicon bridges holds the most promise for power electronics.

By using simulation calculations, both the internal stresses and the thermal conductivity were predicted for given internal arrangements of composites. The Austrian company PLANSEE could set up industrial production for these new materials. "During our investigations with a synchrotron, a particularly brilliant X-ray source, in Grenoble we were able to see how the composites? components, which are arranged three-dimensionally, deformed in different ways upon being repeatedly heated up and cooled down. Furthermore, we were able to ascertain the point at which debonds on the interface between metal matrix and diamond particles become visible in micro-tomography. These debonds are a consequence of local tensile stresses during changes in temperature. The conducting bond to the cooling plate was produced using a new coating procedure", says Degischer.

Chemists (Ass. Prof. C. Edtmaier), physicists (Prof. C. Eisenmenger-Sittner), micro-mechanicists (Prof. H. Böhm) and material scientists from the TU collaborated with two Austrian partners and 35 other European research institutes and companies on the research project "ExtreMat". Four doctoral students successfully carried out the scientific work for the project part on behalf of the TU. Almost 1 million euro has been spent on the project over the past 4 years, 50 percent of which was financed by the European Commission.

Photo download: https://www.tuwien.ac.at/index.php?id=8822

Video: http://www.tuwien.ac.at/flash_video/090507metall_mit_diamanten/

Please direct queries to:
Prof. H. Peter Degischer
Institute of Material Science and
Material Technology
Vienna University of Technology
Karlsplatz 13, 1040 Vienna
T +43/1/58801 - 30801
F +43/1/58801 - 30899
E hpdegi@pop.tuwien.ac.at
Released by:
Daniela Hallegger, M.A.
TU Vienna - PR and Communication
Operngasse 11/E011, A-1040 Vienna
T +43-1-58801-41027
F +43-1-58801-41093
E daniela.hallegger@tuwien.ac.at

Werner Sommer | idw
Further information:
http://www.tuwien.ac.at/pr

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>