Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials Science: metals with diamonds

28.05.2009
An Inter-Faculty research team at the Vienna University of Technology is examining dimensionally stable and thermoconducting material combinations for nuclear fusion.

Material scientists are developing composites which are made of dissimilar materials in order to be able to offer new customised application profiles. Researchers at the Vienna University of Technology (TU) have examined promising metal-matrix composites, which are very good conductors of heat and are able to withstand mechanical loads at elevated temperatures of up to 550 degrees and expand only very little with increasing temperature.

These material combinations may be used in the ITER nuclear reactor, which is currently being constructed at Cadarache, France, and where they are intended to be used in cooling the first wall of the experimental reactor. Enhanced heat removal is playing an increasingly important role in the field of power electronics for engines and computers. Unless excess heat can be dissipated, the power of computers can no longer be increased. Last but not least, metal matrix composites can be used as cooling materials in rocket engines.

Four TU institutes are working on material combinations as part of an EU project of the 6th Framework Programme called ExtreMat (http://www.extremat.org/), which stands for "New Materials for Extreme Environments". "We examined some metal matrix composites and their interfacial bonding which are promising for use in nuclear reactor heat sinks, rocket engines or in power electronics. The characterisation of these heterogeneous materials falls within our area of competency", says Professor H. Peter Degischer, Head of the Institute of Materials Science and Material Technology at the TU Vienna. Copper and silver are efficient conductors, but due to their relatively high coefficient of thermal expansion, do not provide enough inherent strength when changes in temperature occur. In addition, their mechanical strength is sharply reduced at elevated temperatures. Copper deforms like butter from 300 degrees onwards". Strengthening with silicon carbide or tungsten fibres with some 0.1 millimetres or carbon fibres with less than 1/100 millimetres diameter increases the strength and the form stability without reducing conductivity. Degischer believes that a combination of silver with diamond particles of approx. 0.1 millimetres of diameter which are connected by means of thin silicon bridges holds the most promise for power electronics.

By using simulation calculations, both the internal stresses and the thermal conductivity were predicted for given internal arrangements of composites. The Austrian company PLANSEE could set up industrial production for these new materials. "During our investigations with a synchrotron, a particularly brilliant X-ray source, in Grenoble we were able to see how the composites? components, which are arranged three-dimensionally, deformed in different ways upon being repeatedly heated up and cooled down. Furthermore, we were able to ascertain the point at which debonds on the interface between metal matrix and diamond particles become visible in micro-tomography. These debonds are a consequence of local tensile stresses during changes in temperature. The conducting bond to the cooling plate was produced using a new coating procedure", says Degischer.

Chemists (Ass. Prof. C. Edtmaier), physicists (Prof. C. Eisenmenger-Sittner), micro-mechanicists (Prof. H. Böhm) and material scientists from the TU collaborated with two Austrian partners and 35 other European research institutes and companies on the research project "ExtreMat". Four doctoral students successfully carried out the scientific work for the project part on behalf of the TU. Almost 1 million euro has been spent on the project over the past 4 years, 50 percent of which was financed by the European Commission.

Photo download: https://www.tuwien.ac.at/index.php?id=8822

Video: http://www.tuwien.ac.at/flash_video/090507metall_mit_diamanten/

Please direct queries to:
Prof. H. Peter Degischer
Institute of Material Science and
Material Technology
Vienna University of Technology
Karlsplatz 13, 1040 Vienna
T +43/1/58801 - 30801
F +43/1/58801 - 30899
E hpdegi@pop.tuwien.ac.at
Released by:
Daniela Hallegger, M.A.
TU Vienna - PR and Communication
Operngasse 11/E011, A-1040 Vienna
T +43-1-58801-41027
F +43-1-58801-41093
E daniela.hallegger@tuwien.ac.at

Werner Sommer | idw
Further information:
http://www.tuwien.ac.at/pr

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>