Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials Science: metals with diamonds

28.05.2009
An Inter-Faculty research team at the Vienna University of Technology is examining dimensionally stable and thermoconducting material combinations for nuclear fusion.

Material scientists are developing composites which are made of dissimilar materials in order to be able to offer new customised application profiles. Researchers at the Vienna University of Technology (TU) have examined promising metal-matrix composites, which are very good conductors of heat and are able to withstand mechanical loads at elevated temperatures of up to 550 degrees and expand only very little with increasing temperature.

These material combinations may be used in the ITER nuclear reactor, which is currently being constructed at Cadarache, France, and where they are intended to be used in cooling the first wall of the experimental reactor. Enhanced heat removal is playing an increasingly important role in the field of power electronics for engines and computers. Unless excess heat can be dissipated, the power of computers can no longer be increased. Last but not least, metal matrix composites can be used as cooling materials in rocket engines.

Four TU institutes are working on material combinations as part of an EU project of the 6th Framework Programme called ExtreMat (http://www.extremat.org/), which stands for "New Materials for Extreme Environments". "We examined some metal matrix composites and their interfacial bonding which are promising for use in nuclear reactor heat sinks, rocket engines or in power electronics. The characterisation of these heterogeneous materials falls within our area of competency", says Professor H. Peter Degischer, Head of the Institute of Materials Science and Material Technology at the TU Vienna. Copper and silver are efficient conductors, but due to their relatively high coefficient of thermal expansion, do not provide enough inherent strength when changes in temperature occur. In addition, their mechanical strength is sharply reduced at elevated temperatures. Copper deforms like butter from 300 degrees onwards". Strengthening with silicon carbide or tungsten fibres with some 0.1 millimetres or carbon fibres with less than 1/100 millimetres diameter increases the strength and the form stability without reducing conductivity. Degischer believes that a combination of silver with diamond particles of approx. 0.1 millimetres of diameter which are connected by means of thin silicon bridges holds the most promise for power electronics.

By using simulation calculations, both the internal stresses and the thermal conductivity were predicted for given internal arrangements of composites. The Austrian company PLANSEE could set up industrial production for these new materials. "During our investigations with a synchrotron, a particularly brilliant X-ray source, in Grenoble we were able to see how the composites? components, which are arranged three-dimensionally, deformed in different ways upon being repeatedly heated up and cooled down. Furthermore, we were able to ascertain the point at which debonds on the interface between metal matrix and diamond particles become visible in micro-tomography. These debonds are a consequence of local tensile stresses during changes in temperature. The conducting bond to the cooling plate was produced using a new coating procedure", says Degischer.

Chemists (Ass. Prof. C. Edtmaier), physicists (Prof. C. Eisenmenger-Sittner), micro-mechanicists (Prof. H. Böhm) and material scientists from the TU collaborated with two Austrian partners and 35 other European research institutes and companies on the research project "ExtreMat". Four doctoral students successfully carried out the scientific work for the project part on behalf of the TU. Almost 1 million euro has been spent on the project over the past 4 years, 50 percent of which was financed by the European Commission.

Photo download: https://www.tuwien.ac.at/index.php?id=8822

Video: http://www.tuwien.ac.at/flash_video/090507metall_mit_diamanten/

Please direct queries to:
Prof. H. Peter Degischer
Institute of Material Science and
Material Technology
Vienna University of Technology
Karlsplatz 13, 1040 Vienna
T +43/1/58801 - 30801
F +43/1/58801 - 30899
E hpdegi@pop.tuwien.ac.at
Released by:
Daniela Hallegger, M.A.
TU Vienna - PR and Communication
Operngasse 11/E011, A-1040 Vienna
T +43-1-58801-41027
F +43-1-58801-41093
E daniela.hallegger@tuwien.ac.at

Werner Sommer | idw
Further information:
http://www.tuwien.ac.at/pr

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>