Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials Science: metals with diamonds

28.05.2009
An Inter-Faculty research team at the Vienna University of Technology is examining dimensionally stable and thermoconducting material combinations for nuclear fusion.

Material scientists are developing composites which are made of dissimilar materials in order to be able to offer new customised application profiles. Researchers at the Vienna University of Technology (TU) have examined promising metal-matrix composites, which are very good conductors of heat and are able to withstand mechanical loads at elevated temperatures of up to 550 degrees and expand only very little with increasing temperature.

These material combinations may be used in the ITER nuclear reactor, which is currently being constructed at Cadarache, France, and where they are intended to be used in cooling the first wall of the experimental reactor. Enhanced heat removal is playing an increasingly important role in the field of power electronics for engines and computers. Unless excess heat can be dissipated, the power of computers can no longer be increased. Last but not least, metal matrix composites can be used as cooling materials in rocket engines.

Four TU institutes are working on material combinations as part of an EU project of the 6th Framework Programme called ExtreMat (http://www.extremat.org/), which stands for "New Materials for Extreme Environments". "We examined some metal matrix composites and their interfacial bonding which are promising for use in nuclear reactor heat sinks, rocket engines or in power electronics. The characterisation of these heterogeneous materials falls within our area of competency", says Professor H. Peter Degischer, Head of the Institute of Materials Science and Material Technology at the TU Vienna. Copper and silver are efficient conductors, but due to their relatively high coefficient of thermal expansion, do not provide enough inherent strength when changes in temperature occur. In addition, their mechanical strength is sharply reduced at elevated temperatures. Copper deforms like butter from 300 degrees onwards". Strengthening with silicon carbide or tungsten fibres with some 0.1 millimetres or carbon fibres with less than 1/100 millimetres diameter increases the strength and the form stability without reducing conductivity. Degischer believes that a combination of silver with diamond particles of approx. 0.1 millimetres of diameter which are connected by means of thin silicon bridges holds the most promise for power electronics.

By using simulation calculations, both the internal stresses and the thermal conductivity were predicted for given internal arrangements of composites. The Austrian company PLANSEE could set up industrial production for these new materials. "During our investigations with a synchrotron, a particularly brilliant X-ray source, in Grenoble we were able to see how the composites? components, which are arranged three-dimensionally, deformed in different ways upon being repeatedly heated up and cooled down. Furthermore, we were able to ascertain the point at which debonds on the interface between metal matrix and diamond particles become visible in micro-tomography. These debonds are a consequence of local tensile stresses during changes in temperature. The conducting bond to the cooling plate was produced using a new coating procedure", says Degischer.

Chemists (Ass. Prof. C. Edtmaier), physicists (Prof. C. Eisenmenger-Sittner), micro-mechanicists (Prof. H. Böhm) and material scientists from the TU collaborated with two Austrian partners and 35 other European research institutes and companies on the research project "ExtreMat". Four doctoral students successfully carried out the scientific work for the project part on behalf of the TU. Almost 1 million euro has been spent on the project over the past 4 years, 50 percent of which was financed by the European Commission.

Photo download: https://www.tuwien.ac.at/index.php?id=8822

Video: http://www.tuwien.ac.at/flash_video/090507metall_mit_diamanten/

Please direct queries to:
Prof. H. Peter Degischer
Institute of Material Science and
Material Technology
Vienna University of Technology
Karlsplatz 13, 1040 Vienna
T +43/1/58801 - 30801
F +43/1/58801 - 30899
E hpdegi@pop.tuwien.ac.at
Released by:
Daniela Hallegger, M.A.
TU Vienna - PR and Communication
Operngasse 11/E011, A-1040 Vienna
T +43-1-58801-41027
F +43-1-58801-41093
E daniela.hallegger@tuwien.ac.at

Werner Sommer | idw
Further information:
http://www.tuwien.ac.at/pr

More articles from Materials Sciences:

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>