Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials science: A sticky problem

12.12.2011
The US Navy estimates that biofouling—the accumulation of unwanted marine organisms, such as barnacles and seaweeds, on the hulls of ships—can reduce a ship’s speed by 10% and increase fuel consumption by 40%.

Coating the ship’s hull with biocides can help prevent biofouling, but the chemicals used are often harmful to the environment. An environmentally friendly alternative to biocides is the use of microtextured surfaces to which marine organisms have difficulty latching onto.

William Birch and co-workers at A*STAR’s Institute of Materials Research and Engineering1 have now revealed a mechanism by which microtextured surfaces deter marine organisms. The finding could help to develop new artificial surfaces for preventing biofouling.

Previous studies have found that barnacle larvae preferentially settle in cracks and depressions because the voids offer better protection from the currents in which they feed. However, the reason why microtextured surfaces reduce barnacle larvae settlement was unclear. For this reason, the researchers constructed an experimental setup which allows them not only to view the exploration behavior of barnacle larvae on different surfaces, but also to study how the size of surface features influences their surface exploration (see image).

To investigate the impact of surface texture on barnacle settlement behavior, Birch and co-workers fabricated polymer surfaces with features of the same size of a larva’s cyprid attachment pad, which is elliptical in shape and about 20 by 30 microns or thousandths of a millimeter. The surfaces were textured with pillars placed 10 microns apart. The columns were five microns and 30 microns high, and 5, 10, 20, 30, 50 and 100 microns in diameter. A smooth surface without pillars was used as a control. Exploration and settling behavior of the larvae were filmed using close-range microscopy.

The researchers found that barnacle larvae were unperturbed by the five-micron high pillars, as their flexible attachment disks could simultaneously flow over and contact the top of the pillar and the bottom of the space between pillars. Thirty-micron high pillars, however, had a dramatic impact on larval behavior. At smaller diameters, the contact area afforded by the tops of the pillars was small, and the larvae found it difficult to attach to the sides of such slim pillars. At diameters of 30 microns or greater, the larvae tended to form attachment points in the cracks between the columns with their disks wrapping around the sides of the column.

“These and other recent findings have spawned a multidisciplinary research program (Innovative Marine Antifouling Solutions for High Value Applications, IMAS), whose objective is to engineer patterned surfaces and measure performance by quantifying their interactions with marine organisms,” says Birch.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

References

Chaw, K. C., Dickinson, G. H., Ang, K. Y., Deng J. & Birch W. R. Surface exploration of Amphibalanus amphitrite cyprids on microtextured surfaces. Biofouling 27, 413–422 (2011). | article

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg

More articles from Materials Sciences:

nachricht Nano 'sandwich' offers unique properties
28.02.2017 | Rice University

nachricht Sustainable ceramics without a kiln
28.02.2017 | ETH Zurich

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>