Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials with potential / Growing through holes

21.05.2010
Silicon carbide is an up-and-coming semiconductor material. In a thesis project, the qualities of the crystals and the epitaxial layers underwent precise analysis. Another project combines the advantages of crystalline thin-film solar cells with a back contact structure.

Silicon carbide (4H-SiC) is the ideal semiconductor material for power electronics. For instance, efficient power converters for electric vehicles or photovoltaic systems can be produced - as well as electronics that work at high temperatures. Until now, however, very few electron devices made of silicon carbide are on the market.

The reason for this: The quality of the crystals and epitaxial layers is not yet sufficient for the demanding applications because even the slightest material defects, in form of dislocations, can lead to a malfunction of the component. Dislocations are deviations from the ideal crystal lattice structure, which may occur in different types.

In his thesis project, „Structural defect characterization of 4H-SiC substrates and epitaxial layers using x-ray topography and x-ray diffractometry," Sebastian Polster of the Fraunhofer Institute for Integrated Systems and Device Technology IISB studied these dislocations. He compared the type and number of these crystalline defects using x-ray images that he recorded with the ANKA synchrotron source, with images that were prepared using the conventional etching technique in the laboratory. In this manner, he succeeded in depicting the limits of the established characterization method. The results of this method can now be interpreted with certainty. This is an important basis in order to improve the material regarding the avoidance of critical dislocation types in the material, so that electron devices based on SiC can dominate their market. In recognition of his accomplishments, Sebastian Polster is awarded the 2nd Hugo Geiger Prize.

Growing through holes

An important objective of solar cell research is to produce photovoltaic modules inexpensively, in order to make the power it produces competitive with conventional energy resources. One potential concept to achieve this is the use of crystalline thin-film solar cells, which come from a very thin layer of the expensive, ultrapure silicon. Another option can be found in solar cells whose current-collecting contacts are situated only on the back side of the solar cells, laden with via holes.. Physicist Nils Brinkmann of the Fraunhofer Institute for Solar Energy Systems ISE showed in his thesis project, „Epitaxy through holes: Process development and characterization," how the advantages of both varieties can be brought together.

One decisive factor in the new cell concept: minute via holes. The epitaxial layers grow through these on both sides of the thin silicon substrate. This completely new approach was developed by Nils Brinkmann with the aid of Simulations that he then applied in a production process. In addition, he showed how the degree of efficiency of the new solar cells can be further optimized. Nils Brinkmann is awarded the 3rd Hugo Geiger Prize.

Sebastian Polster | Fraunhofer Mediendienst
Further information:
http://www.fraunhofer.de/en/press/research-news/2010/05/material-with-potential.jsp

Further reports about: 4H-SiC Silicon Valley electric vehicle photovoltaic system solar cells

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>