Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials with potential / Growing through holes

21.05.2010
Silicon carbide is an up-and-coming semiconductor material. In a thesis project, the qualities of the crystals and the epitaxial layers underwent precise analysis. Another project combines the advantages of crystalline thin-film solar cells with a back contact structure.

Silicon carbide (4H-SiC) is the ideal semiconductor material for power electronics. For instance, efficient power converters for electric vehicles or photovoltaic systems can be produced - as well as electronics that work at high temperatures. Until now, however, very few electron devices made of silicon carbide are on the market.

The reason for this: The quality of the crystals and epitaxial layers is not yet sufficient for the demanding applications because even the slightest material defects, in form of dislocations, can lead to a malfunction of the component. Dislocations are deviations from the ideal crystal lattice structure, which may occur in different types.

In his thesis project, „Structural defect characterization of 4H-SiC substrates and epitaxial layers using x-ray topography and x-ray diffractometry," Sebastian Polster of the Fraunhofer Institute for Integrated Systems and Device Technology IISB studied these dislocations. He compared the type and number of these crystalline defects using x-ray images that he recorded with the ANKA synchrotron source, with images that were prepared using the conventional etching technique in the laboratory. In this manner, he succeeded in depicting the limits of the established characterization method. The results of this method can now be interpreted with certainty. This is an important basis in order to improve the material regarding the avoidance of critical dislocation types in the material, so that electron devices based on SiC can dominate their market. In recognition of his accomplishments, Sebastian Polster is awarded the 2nd Hugo Geiger Prize.

Growing through holes

An important objective of solar cell research is to produce photovoltaic modules inexpensively, in order to make the power it produces competitive with conventional energy resources. One potential concept to achieve this is the use of crystalline thin-film solar cells, which come from a very thin layer of the expensive, ultrapure silicon. Another option can be found in solar cells whose current-collecting contacts are situated only on the back side of the solar cells, laden with via holes.. Physicist Nils Brinkmann of the Fraunhofer Institute for Solar Energy Systems ISE showed in his thesis project, „Epitaxy through holes: Process development and characterization," how the advantages of both varieties can be brought together.

One decisive factor in the new cell concept: minute via holes. The epitaxial layers grow through these on both sides of the thin silicon substrate. This completely new approach was developed by Nils Brinkmann with the aid of Simulations that he then applied in a production process. In addition, he showed how the degree of efficiency of the new solar cells can be further optimized. Nils Brinkmann is awarded the 3rd Hugo Geiger Prize.

Sebastian Polster | Fraunhofer Mediendienst
Further information:
http://www.fraunhofer.de/en/press/research-news/2010/05/material-with-potential.jsp

Further reports about: 4H-SiC Silicon Valley electric vehicle photovoltaic system solar cells

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>