Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials with potential / Growing through holes

21.05.2010
Silicon carbide is an up-and-coming semiconductor material. In a thesis project, the qualities of the crystals and the epitaxial layers underwent precise analysis. Another project combines the advantages of crystalline thin-film solar cells with a back contact structure.

Silicon carbide (4H-SiC) is the ideal semiconductor material for power electronics. For instance, efficient power converters for electric vehicles or photovoltaic systems can be produced - as well as electronics that work at high temperatures. Until now, however, very few electron devices made of silicon carbide are on the market.

The reason for this: The quality of the crystals and epitaxial layers is not yet sufficient for the demanding applications because even the slightest material defects, in form of dislocations, can lead to a malfunction of the component. Dislocations are deviations from the ideal crystal lattice structure, which may occur in different types.

In his thesis project, „Structural defect characterization of 4H-SiC substrates and epitaxial layers using x-ray topography and x-ray diffractometry," Sebastian Polster of the Fraunhofer Institute for Integrated Systems and Device Technology IISB studied these dislocations. He compared the type and number of these crystalline defects using x-ray images that he recorded with the ANKA synchrotron source, with images that were prepared using the conventional etching technique in the laboratory. In this manner, he succeeded in depicting the limits of the established characterization method. The results of this method can now be interpreted with certainty. This is an important basis in order to improve the material regarding the avoidance of critical dislocation types in the material, so that electron devices based on SiC can dominate their market. In recognition of his accomplishments, Sebastian Polster is awarded the 2nd Hugo Geiger Prize.

Growing through holes

An important objective of solar cell research is to produce photovoltaic modules inexpensively, in order to make the power it produces competitive with conventional energy resources. One potential concept to achieve this is the use of crystalline thin-film solar cells, which come from a very thin layer of the expensive, ultrapure silicon. Another option can be found in solar cells whose current-collecting contacts are situated only on the back side of the solar cells, laden with via holes.. Physicist Nils Brinkmann of the Fraunhofer Institute for Solar Energy Systems ISE showed in his thesis project, „Epitaxy through holes: Process development and characterization," how the advantages of both varieties can be brought together.

One decisive factor in the new cell concept: minute via holes. The epitaxial layers grow through these on both sides of the thin silicon substrate. This completely new approach was developed by Nils Brinkmann with the aid of Simulations that he then applied in a production process. In addition, he showed how the degree of efficiency of the new solar cells can be further optimized. Nils Brinkmann is awarded the 3rd Hugo Geiger Prize.

Sebastian Polster | Fraunhofer Mediendienst
Further information:
http://www.fraunhofer.de/en/press/research-news/2010/05/material-with-potential.jsp

Further reports about: 4H-SiC Silicon Valley electric vehicle photovoltaic system solar cells

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>