Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials for first optical fibers with high-speed electronic function are developed

06.02.2012
For the first time, a group of chemists, physicists, and engineers has developed crystalline materials that allow an optical fiber to have integrated, high-speed electronic functions.

The potential applications of such optical fibers include improved telecommunications and other hybrid optical and electronic technologies, improved laser technology, and more-accurate remote-sensing devices.


For the first time, researchers have developed crystalline materials that allow an optical fiber to have integrated, high-speed electronic functions. The potential applications of such optical fibers include improved telecommunications and other hybrid optical and electronic technologies, improved laser technology, and more-accurate remote-sensing devices. The international team, led by John Badding, a professor of chemistry at Penn State, will publish its findings in the journal Nature Photonics. The team built an optical fiber with a high-speed electronic junction -- the active boundary where all the electronic action takes place -- integrated adjacent to the light-guiding fiber core. Light pulses (white spheres) traveling down the fiber can be converted to electrical signals (square wave) inside the fiber by the junction. The potential applications of such optical fibers include improved telecommunications and other hybrid optical and electronic technologies and improved laser technology. Credit: John Badding lab, Penn State University

The research was initiated by Rongrui He, a postdoctoral researcher in the Department of Chemistry at Penn State University. The international team, led by John Badding, a professor of chemistry at Penn State, will publish its findings in the journal Nature Photonics.

Badding explained that one of the greatest current technological challenges is exchanging information between optics and electronics rapidly and efficiently. Existing technology has resulted in sometimes-clumsy ways of merging optical fibers with electronic chips -- silicon-based integrated circuits that serve as the building blocks for most semiconductor electronic devices such as solar cells, light-emitting diodes (LEDs), computers, and cell phones. "The optical fiber is usually a passive medium that simply transports light, while the chip is the piece that performs the electrical part of the equation," Badding said.

"For example, light is transmitted from London to New York via fiber-optic cables when two people set up a video call on their computers. But the computer screens and associated electronic devices have to take that light and convert it to an image, which is an electrical process. Light and electricity are working in concert in a process called an OEO conversion, or an optical-electrical-optical conversion." Badding said that, ideally, rather than coupling the optical fiber to the chip, as is routine in existing technology, a "smart fiber" would have the electronic functions already built in.

The integration of optical fibers and chips is difficult for many reasons. First, fibers are round and cylindrical, while chips are flat, so simply shaping the connection between the two is a challenge. Another challenge is the alignment of pieces that are so small. "An optical fiber is 10 times smaller than the width of a human hair. On top of that, there are light-guiding pathways that are built onto chips that are even smaller than the fibers by as much as 100 times," Badding said. "So imagine just trying to line those two devices up. That feat is a big challenge for today's technology."

To address these challenges, the team members took a different approach. Rather than merge a flat chip with a round optical fiber, they found a way to build a new kind of optical fiber with its own integrated electronic component, thereby bypassing the need to integrate fiber-optics onto a chip. To do this, they used high-pressure chemistry techniques to deposit semiconducting materials directly, layer by layer, into tiny holes in optical fibers. "The big breakthrough here is that we don't need the whole chip as part of the finished product. We have managed to build the junction -- the active boundary where all the electronic action takes place -- right into the fiber," said Pier J. A. Sazio of the University of Southampton in the United Kingdom and one of the team's leaders. "Moreover, while conventional chip fabrication requires multimillion-dollar clean-room facilities, our process can be performed with simple equipment that costs much less."

Sazio added that one of the key goals of research in this field is to create a fast, all-fiber network. "If the signal never leaves the fiber, then it is a faster, cheaper, and more efficient technology," said Sazio. "Moving technology off the chip and directly onto the fiber, which is the more-natural place for light, opens up the potential for embedded semiconductors to carry optoelectronic applications to the next level. At present, you still have electrical switching at both ends of the optical fiber. If we can actually generate signals inside a fiber, a whole range of optoelectronic applications becomes possible."

The research also has many potential non-telecommunications applications. "For example, our work also represents a very different approach to fabricating semiconductor junctions that we are investigating for solar-cell applications," said Badding.

In addition to Badding, Sazio, and He, other researchers who contributed to this study include Venkatraman Gopalan of Penn State, and Anna C. Peacock and Noel Healy of the Optoelectronics Research Centre in the United Kingdom.

The research was funded by the U.S. National Science Foundation and the Engineering and Physical Sciences Research Council of the United Kingdom.

[ Katrina Voss ]

CONTACTS

John Badding: 814-777-3054 (mobile), jbadding@pearl.chem.psu.edu
Pier J. A. Sazio: 44-23-8059-3144, pjas@orc.soton.ac.uk
Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

Barbara Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>