Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Materials Become Multifunctional at Ultimate Quantum Limit

26.09.2012
A University of Arkansas physicist and his colleagues have examined the lower limits of novel materials called complex oxides and discovered that unlike conventional semiconductors the materials not only conduct electricity, but also develop unusual magnetic properties.

Jak Chakhalian, Jian Liu, Derek Meyers and Benjamin Gray of the University of Arkansas and John W. Freeland and Phillip Ryan of the Advanced Photon Source at Argonne National Laboratory present their ideas in Physical Review Letters.

“Contrary to what we have today in modern microelectronics devices based on silicon, here in a single quantum well, which is just four nanometers thick, we now have several functionalities in one device layer,” said Chakhalian, professor of physics and holder of the Charles and Clydene Scharlau Chair in the J. William Fulbright College of Arts and Sciences. “Engineers can use this class of material to devise new multifunctional devices based on the electrons’ spin.”

The microelectronic materials – semiconductors -- used in today’s computers, have almost reached the lower limitation for size and functionality. Computers run on several semiconducting devices layered together in the very smallest of spaces, known as quantum wells, where nanoscale layers of a semiconducting material are sandwiched between two nanoscale layers of a non-conducting material. However, the researchers found that by using complex oxides with correlated electrons confined to quantum well geometry, they added a new dimension to the mix.

The new structure is based on the concept of correlated charge carriers, like those found in rust, or iron oxide. In rust, if one electron does something, all of the other electrons “know” about it. This phenomenon, called correlated electrons, does not exist in silicon-based materials that run today’s computers, televisions, complex medical equipment,power cell phones and keep the electricity on in homes.

“In normal materials used today, electrons don’t care about the movement of one another,” Chakhalian said. “We can predict their properties almost on the ‘back of an envelope’ with the help of powerful computers.” However, with correlated materials, the calculations for the movement of one electron involve tracking the interactions with billions of electrons, and this is beyond modern theory capabilities.

Chakhalian and his colleagues went down to four atomic layers of a correlated complex oxide material based on nickel and sandwiched it in between two layers of non-conducting oxide material based on aluminum. Unlike the semiconducting materials, the complex oxide structure revealed the unexpected presence of both electronic and magnetic properties.

These multiple properties in a single material may allow the semiconductor industry to push the limits of current conventional computers and develop multiple functions for a single device, possibly allowing everyday electronics to become smaller and faster than they are today.

Chakhalian is a professor in the Institute for Nanoscience and Engineering.

CONTACTS:
Jak Chakhalian, Charles and Clydene Scharlau Professor of Physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakhal@uark.edu
Melissa Lutz Blouin, senior director of academic communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>