Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Materials Become Multifunctional at Ultimate Quantum Limit

26.09.2012
A University of Arkansas physicist and his colleagues have examined the lower limits of novel materials called complex oxides and discovered that unlike conventional semiconductors the materials not only conduct electricity, but also develop unusual magnetic properties.

Jak Chakhalian, Jian Liu, Derek Meyers and Benjamin Gray of the University of Arkansas and John W. Freeland and Phillip Ryan of the Advanced Photon Source at Argonne National Laboratory present their ideas in Physical Review Letters.

“Contrary to what we have today in modern microelectronics devices based on silicon, here in a single quantum well, which is just four nanometers thick, we now have several functionalities in one device layer,” said Chakhalian, professor of physics and holder of the Charles and Clydene Scharlau Chair in the J. William Fulbright College of Arts and Sciences. “Engineers can use this class of material to devise new multifunctional devices based on the electrons’ spin.”

The microelectronic materials – semiconductors -- used in today’s computers, have almost reached the lower limitation for size and functionality. Computers run on several semiconducting devices layered together in the very smallest of spaces, known as quantum wells, where nanoscale layers of a semiconducting material are sandwiched between two nanoscale layers of a non-conducting material. However, the researchers found that by using complex oxides with correlated electrons confined to quantum well geometry, they added a new dimension to the mix.

The new structure is based on the concept of correlated charge carriers, like those found in rust, or iron oxide. In rust, if one electron does something, all of the other electrons “know” about it. This phenomenon, called correlated electrons, does not exist in silicon-based materials that run today’s computers, televisions, complex medical equipment,power cell phones and keep the electricity on in homes.

“In normal materials used today, electrons don’t care about the movement of one another,” Chakhalian said. “We can predict their properties almost on the ‘back of an envelope’ with the help of powerful computers.” However, with correlated materials, the calculations for the movement of one electron involve tracking the interactions with billions of electrons, and this is beyond modern theory capabilities.

Chakhalian and his colleagues went down to four atomic layers of a correlated complex oxide material based on nickel and sandwiched it in between two layers of non-conducting oxide material based on aluminum. Unlike the semiconducting materials, the complex oxide structure revealed the unexpected presence of both electronic and magnetic properties.

These multiple properties in a single material may allow the semiconductor industry to push the limits of current conventional computers and develop multiple functions for a single device, possibly allowing everyday electronics to become smaller and faster than they are today.

Chakhalian is a professor in the Institute for Nanoscience and Engineering.

CONTACTS:
Jak Chakhalian, Charles and Clydene Scharlau Professor of Physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakhal@uark.edu
Melissa Lutz Blouin, senior director of academic communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Magnesium magnificent for plasmonic applications
23.05.2018 | Rice University

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>