Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel Materials Become Multifunctional at Ultimate Quantum Limit

A University of Arkansas physicist and his colleagues have examined the lower limits of novel materials called complex oxides and discovered that unlike conventional semiconductors the materials not only conduct electricity, but also develop unusual magnetic properties.

Jak Chakhalian, Jian Liu, Derek Meyers and Benjamin Gray of the University of Arkansas and John W. Freeland and Phillip Ryan of the Advanced Photon Source at Argonne National Laboratory present their ideas in Physical Review Letters.

“Contrary to what we have today in modern microelectronics devices based on silicon, here in a single quantum well, which is just four nanometers thick, we now have several functionalities in one device layer,” said Chakhalian, professor of physics and holder of the Charles and Clydene Scharlau Chair in the J. William Fulbright College of Arts and Sciences. “Engineers can use this class of material to devise new multifunctional devices based on the electrons’ spin.”

The microelectronic materials – semiconductors -- used in today’s computers, have almost reached the lower limitation for size and functionality. Computers run on several semiconducting devices layered together in the very smallest of spaces, known as quantum wells, where nanoscale layers of a semiconducting material are sandwiched between two nanoscale layers of a non-conducting material. However, the researchers found that by using complex oxides with correlated electrons confined to quantum well geometry, they added a new dimension to the mix.

The new structure is based on the concept of correlated charge carriers, like those found in rust, or iron oxide. In rust, if one electron does something, all of the other electrons “know” about it. This phenomenon, called correlated electrons, does not exist in silicon-based materials that run today’s computers, televisions, complex medical equipment,power cell phones and keep the electricity on in homes.

“In normal materials used today, electrons don’t care about the movement of one another,” Chakhalian said. “We can predict their properties almost on the ‘back of an envelope’ with the help of powerful computers.” However, with correlated materials, the calculations for the movement of one electron involve tracking the interactions with billions of electrons, and this is beyond modern theory capabilities.

Chakhalian and his colleagues went down to four atomic layers of a correlated complex oxide material based on nickel and sandwiched it in between two layers of non-conducting oxide material based on aluminum. Unlike the semiconducting materials, the complex oxide structure revealed the unexpected presence of both electronic and magnetic properties.

These multiple properties in a single material may allow the semiconductor industry to push the limits of current conventional computers and develop multiple functions for a single device, possibly allowing everyday electronics to become smaller and faster than they are today.

Chakhalian is a professor in the Institute for Nanoscience and Engineering.

Jak Chakhalian, Charles and Clydene Scharlau Professor of Physics
J. William Fulbright College of Arts and Sciences
Melissa Lutz Blouin, senior director of academic communications
University Relations

Melissa Lutz Blouin | Newswise Science News
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>