Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Material tested that could guarantee body protheses for more than 150 years

23.02.2010
Current body protheses do not last more than 10-15 years. After this time, the operation has to be repeated in order to change prothesis. It is usually problematic as, in general, it is elderly people that use the procedure.

Researcher Nere Garmendia, based in the Basque city of Donostia-San Sebastián, has just published her PhD, a thesis which may well mean the first step to solving this problem. According to Ms Garmendia, using a ceramic material called zirconia (Zr02), carbon nanotubes and nanoparticles of zirconia, a prothesis that will last more than 150 years can be produced.

The PhD thesis is titled Development of a new nanocompound material made of zirconia with coated carbon nanotubes, for orthopaedic applications. Ms Garmendia wished to show that the ageing and cracking of protheses could be avoided. To begin with, carbon nanotubes were added to the zirconia matrix – a technique that greatly strengthens its resistance. With this composite material as a base research was initiated.

The researcher reinforced the connection between the zirconia matrix and the nanotubes, with the intention of improving the transfer/distribution of loads. The nanotubes were coated with nanoparticles of zirconia and, in order for this to be effected, the nanoparticles were heated beyond their boiling point (hydrothermal synhtesis). This coating functioned as a bridge between the zirconia matrix and the nanotubes.

Ms Garmendia explained in her thesis that working at a nanometric scale is precisely the key to achieving long-lasting protheses. In a prior experiment with micrometric zirconia it was concluded that this material would end up considerably aged after 12 years. Nevertheless, as has been pointed out, apart from the zirconia matrix, adding carbon nanotubes and the nanoparticles of zirconia coating them, the material will not age -even after 150 years.
The maximum possible density

With the nanotubes coated, Ms Garmendia investigated the capacity for the displacement and dispersion of the composite obtained from the previous process, and also looked for its suitable point of density. Based on this and aided by plaster, she achieved the first compact pieces.

Subsequently, Ms Garmendia specified the number of coated nanotubes each piece had to have in order to achieve the optimum density at the end of the process. According to the researcher, adding zirconia nanoparticles to the nanotubes facilitates the dispersion of the material and reduces its viscosity, apart from helping to increase its density for the next and last stage: the synterisation stage. Synterisation is a process, used particularly in ceramics, in order to transform the material from powder to a compact solid. Not just any quantity is useful to achieve this maximum possible density and, thus, before synterisation, it has to be decided how many nanotubes are to be introduced and, of course, synterisation has to be subsequently carried out correctly.

As Ms Garmendia calculated, if the intention is to obtain the maximum possible density (98%), in order to start the composition, 1% of its volume must be of coated nanotubes. Finally, the material has to be synterised in argon for one hour at 1,300 degrees; not more nor less.
About the author

Ms Nere Garmendia Arcelus (Donostia, 1980) is an industrial engineer, having graduated in 2003 from TECNUN-University of Navarra. She undertook her PhD thesis under the direction of Isabel Obieta Vilallonga and Ana García Romero, from the Department of Mining Engineering and Metallurgy and Materials Sciences of the Higher Technical School of Engineering in Bilbao.

She is currently working at Inasmet-Tecnalia where she carried out her PhD. She also worked with other bodies for the research: INSA-Lyon in France (six months), the Institute of Ceramics and Glass-CSIC in Madrid (six weeks), the Donostia International Physics Center (on various simulations), the Universitat de Barcelona (microscopy) and the CINN-CSIC in Oviedo (on the development of the material).

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>