Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Material tested that could guarantee body protheses for more than 150 years

23.02.2010
Current body protheses do not last more than 10-15 years. After this time, the operation has to be repeated in order to change prothesis. It is usually problematic as, in general, it is elderly people that use the procedure.

Researcher Nere Garmendia, based in the Basque city of Donostia-San Sebastián, has just published her PhD, a thesis which may well mean the first step to solving this problem. According to Ms Garmendia, using a ceramic material called zirconia (Zr02), carbon nanotubes and nanoparticles of zirconia, a prothesis that will last more than 150 years can be produced.

The PhD thesis is titled Development of a new nanocompound material made of zirconia with coated carbon nanotubes, for orthopaedic applications. Ms Garmendia wished to show that the ageing and cracking of protheses could be avoided. To begin with, carbon nanotubes were added to the zirconia matrix – a technique that greatly strengthens its resistance. With this composite material as a base research was initiated.

The researcher reinforced the connection between the zirconia matrix and the nanotubes, with the intention of improving the transfer/distribution of loads. The nanotubes were coated with nanoparticles of zirconia and, in order for this to be effected, the nanoparticles were heated beyond their boiling point (hydrothermal synhtesis). This coating functioned as a bridge between the zirconia matrix and the nanotubes.

Ms Garmendia explained in her thesis that working at a nanometric scale is precisely the key to achieving long-lasting protheses. In a prior experiment with micrometric zirconia it was concluded that this material would end up considerably aged after 12 years. Nevertheless, as has been pointed out, apart from the zirconia matrix, adding carbon nanotubes and the nanoparticles of zirconia coating them, the material will not age -even after 150 years.
The maximum possible density

With the nanotubes coated, Ms Garmendia investigated the capacity for the displacement and dispersion of the composite obtained from the previous process, and also looked for its suitable point of density. Based on this and aided by plaster, she achieved the first compact pieces.

Subsequently, Ms Garmendia specified the number of coated nanotubes each piece had to have in order to achieve the optimum density at the end of the process. According to the researcher, adding zirconia nanoparticles to the nanotubes facilitates the dispersion of the material and reduces its viscosity, apart from helping to increase its density for the next and last stage: the synterisation stage. Synterisation is a process, used particularly in ceramics, in order to transform the material from powder to a compact solid. Not just any quantity is useful to achieve this maximum possible density and, thus, before synterisation, it has to be decided how many nanotubes are to be introduced and, of course, synterisation has to be subsequently carried out correctly.

As Ms Garmendia calculated, if the intention is to obtain the maximum possible density (98%), in order to start the composition, 1% of its volume must be of coated nanotubes. Finally, the material has to be synterised in argon for one hour at 1,300 degrees; not more nor less.
About the author

Ms Nere Garmendia Arcelus (Donostia, 1980) is an industrial engineer, having graduated in 2003 from TECNUN-University of Navarra. She undertook her PhD thesis under the direction of Isabel Obieta Vilallonga and Ana García Romero, from the Department of Mining Engineering and Metallurgy and Materials Sciences of the Higher Technical School of Engineering in Bilbao.

She is currently working at Inasmet-Tecnalia where she carried out her PhD. She also worked with other bodies for the research: INSA-Lyon in France (six months), the Institute of Ceramics and Glass-CSIC in Madrid (six weeks), the Donostia International Physics Center (on various simulations), the Universitat de Barcelona (microscopy) and the CINN-CSIC in Oviedo (on the development of the material).

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>