Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Material tested that could guarantee body protheses for more than 150 years

23.02.2010
Current body protheses do not last more than 10-15 years. After this time, the operation has to be repeated in order to change prothesis. It is usually problematic as, in general, it is elderly people that use the procedure.

Researcher Nere Garmendia, based in the Basque city of Donostia-San Sebastián, has just published her PhD, a thesis which may well mean the first step to solving this problem. According to Ms Garmendia, using a ceramic material called zirconia (Zr02), carbon nanotubes and nanoparticles of zirconia, a prothesis that will last more than 150 years can be produced.

The PhD thesis is titled Development of a new nanocompound material made of zirconia with coated carbon nanotubes, for orthopaedic applications. Ms Garmendia wished to show that the ageing and cracking of protheses could be avoided. To begin with, carbon nanotubes were added to the zirconia matrix – a technique that greatly strengthens its resistance. With this composite material as a base research was initiated.

The researcher reinforced the connection between the zirconia matrix and the nanotubes, with the intention of improving the transfer/distribution of loads. The nanotubes were coated with nanoparticles of zirconia and, in order for this to be effected, the nanoparticles were heated beyond their boiling point (hydrothermal synhtesis). This coating functioned as a bridge between the zirconia matrix and the nanotubes.

Ms Garmendia explained in her thesis that working at a nanometric scale is precisely the key to achieving long-lasting protheses. In a prior experiment with micrometric zirconia it was concluded that this material would end up considerably aged after 12 years. Nevertheless, as has been pointed out, apart from the zirconia matrix, adding carbon nanotubes and the nanoparticles of zirconia coating them, the material will not age -even after 150 years.
The maximum possible density

With the nanotubes coated, Ms Garmendia investigated the capacity for the displacement and dispersion of the composite obtained from the previous process, and also looked for its suitable point of density. Based on this and aided by plaster, she achieved the first compact pieces.

Subsequently, Ms Garmendia specified the number of coated nanotubes each piece had to have in order to achieve the optimum density at the end of the process. According to the researcher, adding zirconia nanoparticles to the nanotubes facilitates the dispersion of the material and reduces its viscosity, apart from helping to increase its density for the next and last stage: the synterisation stage. Synterisation is a process, used particularly in ceramics, in order to transform the material from powder to a compact solid. Not just any quantity is useful to achieve this maximum possible density and, thus, before synterisation, it has to be decided how many nanotubes are to be introduced and, of course, synterisation has to be subsequently carried out correctly.

As Ms Garmendia calculated, if the intention is to obtain the maximum possible density (98%), in order to start the composition, 1% of its volume must be of coated nanotubes. Finally, the material has to be synterised in argon for one hour at 1,300 degrees; not more nor less.
About the author

Ms Nere Garmendia Arcelus (Donostia, 1980) is an industrial engineer, having graduated in 2003 from TECNUN-University of Navarra. She undertook her PhD thesis under the direction of Isabel Obieta Vilallonga and Ana García Romero, from the Department of Mining Engineering and Metallurgy and Materials Sciences of the Higher Technical School of Engineering in Bilbao.

She is currently working at Inasmet-Tecnalia where she carried out her PhD. She also worked with other bodies for the research: INSA-Lyon in France (six months), the Institute of Ceramics and Glass-CSIC in Madrid (six weeks), the Donostia International Physics Center (on various simulations), the Universitat de Barcelona (microscopy) and the CINN-CSIC in Oviedo (on the development of the material).

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Materials Sciences:

nachricht Graphene origami as a mechanically tunable plasmonic structure for infrared detection
25.04.2018 | University of Illinois College of Engineering

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>